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On the theory of spin—lattice relaxation due to the hopping
motion of light interstitials; the role of excited states

L Schimmele and A Klamt}

Max-Planck-Institut fiir Metallforschung, Institut fiir Physik, Postfach 800665, D-W-7000
Stuttgart 80, Federal Republic of Germany

Received 4 November 1991

Abstract. The dipolar contribution to the spin-lattice relaxation rate 'y of spin<carrying
light interstitials is calculated assuming nearest-neighbour hopping among tetrahedral
sites of a BCC latlice. As a new element, which was missing in previous treatinents, we
took inta account explicitly the existence of localized exciled states of the interstitials.
The model considers two states per site, ie., the ground state and one excited state,
and takes into account transitions belween the ground states, the excited states, and
between an excited level and a ground state of two neighbouring interstitial sites as
well as intrasite trapsitions between ground and cxcited states of the same site. If the
intrasite transitions from the ground to the excited state are not fast compared with the
tunnelling rate among the ground states of neigbouring tetrahedral sites, which is likely
1o be the case for hydrogen in BCC metals like Nb and T, the extended model predicts
deviations from the results obtsined for the usually considered model which describes the
interstitial motion by a single effective hopping [requency among tetrahedral sites. The
product & = '} D, in which I is the diffusivity of the interstitial, may be considerably
larger for the extended model than for the single-hopping-frequency model. Moreover
the various hopping frequencies do not drop out from o as does the effective hopping
frequency in the latter case, This may lead to a strong increase of o with temperature
in contrast to the temperature independence of o for the single-frequency model. The
theoretical results are compared gualitatively with NMR experiments performed on the
ar-phases of NbH; and TaH;.

1. Introduction

During the past few years considerable effort has been spent on the investigation
of the diffusion of hydrogen and its isotopes in metals. Marked deviations from
the predictions of the classical rate theory have been found which indicate that the
diffusion of light particles is affected in an essential manner by quantum effects. In
many cases this is true even at high temperatures.

A powerfui technique for studying the diffusion of hydrogen (or its isotopes) is
nuclear magnetic resonance (NMR) (see, e.g.,, Messer ef af 1986 or Cotts 1978). The
diffusion of positive muons (u*, where u* can actually be regarded as a light hydro-
gen isotope for our purposes) may be investigated by the related y*SR (muon spin
rotation, relaxation) method (see, e.g,, Seeger 1984 or Schenk 1985). The hydrogen
motion is detected via its effect on the proton (deuteron, triton) spin relaxation rates,
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which is due to the fact that diffusion of spin carriers (the hydrogen nuclei or the u*)
leads to a random time-dependent modulation of the spin-dependent interaction. In
order to interpret spin relaxation rates in terms of diffusion processes their relation
to microscopic diffusion models has to be established.

For testing theories of quantum diffusion it is desirable to investigate samples
containing hydrogen in very low concentrations (< 1%) in order to minimize the
hydrogen-hydrogen interaction which otherwise would make it difficult to identify the
elementary diffusion processes. It is the purpose of this paper to give expressions
for the hydrogen spin relaxation rates in this concentration regime and for a certain
microscopic diffusion model to be specified below. We restrict our treatment to
situations where hydrogen is dissolved in para- or diamagnetic samples and where the
spin-lattice relaxation rate, Iy, is determined by the interaction between the magnetic
dipole moments of the hydrogen nuclei and the magnetic moments of the host nuclei.
This dipolar contribution to T, is directly related to the diffusion of hydrogen. We
further confine ourselves to the regime where diffusion proceeds by small-polaron
hopping and we thus exclude coherent propagation. For hydrogen, and even muons,
the hopping regime extends down to the Jowest temperatures investigated so far with
the possible exception of local tunnelling centres (see, e.g., Wipl er al 1984, 1987).

To our knowledge all previous discussions relating nuclear spin relaxation rates
with small-polaron hopping proceeded as for classical over barrier jumps, ie., first
one considered a number of sites corresponding to local minima of the quasiparticle
energy as a function of its spatial coordinates and then one introduced transitions
among them described by various hopping frequencics, A difference between quantum
motion and classical hopping appears only in so far as the temperature and isotopic
dependence of the hopping frequencics iS given in the first case by the laws of
quantum hopping (see, e.g., Flynn and Stoncham 1970, Teichler 1977, Emin ef al
1979, Kondo 1984 and Grabert ¢ af 1986) whereas in the second case they are
given by the classical transition state theoryt. The hydrogen diffusivity is dominated
at low temperatures by tunnelling transitions between the particle ground states of
neigbouring sites (Flynn and Stoneham 1970, Teichler 1977 and Grabert er al 1986).
At higher temperatures, however, transitions between excited states, well separated
in energy from the ground state, gain more and more importance (Emin et al 1979,
Klamt and Teichler 1986). If we want to describc hopping among a particular pair
of sites by just onc hopping frequency we have to define an effective frequency
which is an average over the various contributions weighted according to the thermal
occupation of the initial states.

This average description is certainly sufficient as long as one considers diffusion
over a macroscopic distance as measured, e.g., by the Gorski effect (Qi et a/ 1983) or
by NMR using the pulsed field gradient method (Stejskal and Tanner 1965, Mauger et
al 1981, Hampele et a/ 1989). Spin relaxation rates, however, are to a large cxtent de-
termined by the time correlations between a few successive hops. In this case the rate
of transitions among the various states which are localized within the 'same potential
well’ (at the same site)—they will be cailed intrasite transitions in the following—
determines whether the average description is correct. If the intrasite transitions are
not fast compared 1o transitions between differcnt sites a description which regards
the various states localized at a specific site as a single entity and which describes

 Note, sometimes the finite exiension of the hydrogen wave function is taken into account (see Mc Mulien
and Zaremba 1978).
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hopping to a neighbouring site by an averaged frequency is in generai inadequate.
Since for hydrogen in metals the energy separation between the lowest excited state
and the ground state is usually large compared to a typical phonon frequency of the
host lattice many phonons are required to take up the energy imbalance associated
with a transition between these levels. Phonon-induced transitions between these lev-
els are therefore expected to be relatively slow. Additional coupling to electrons will
speed up the intrasite transitions. However, for the systems considered below (NbH,
TaH), there is experimental evidence (see section 2) that the deexcitation trapsitions,
of whatever origin, are not faster, at least, than the tunnelling transitions between
the excited states in neighbouring wells. We therefore believe that in many instances
the more detailed treatment outlined below is required. This statement should hold
similiarly for quasielastic neutron scattering on metal hydrogen systems. Indeed one
motive for doing the following investigations has been the quasielastic neutron scat-
tering results on NbH and TaH obtained by Lottner ef af (1979) and one of the
interpretations given by these authors. We therefore investigate the consequences
that the existence of discrete excited states and the concomitant occurrence of sev-
eral hopping paths connecting a certain pair of sites may have for spin relaxation
rates. Specificially we consider hopping among tetrahedral sites in BCC metals like
Nb and Ta and we take into account only two states per site, ie., the ground state
and one further state which exists for several excited states. Our explicit calculations
contain the simplifying assumptions that hydrogen is localized point-like at tetrahedral
sites for both states, and furthermore we do not take into account Jattice distortions
in the vicinity of the hydrogen atom.

As is well known (see, e.g,, Cotts 1978 or Fedders and Sankey 1978) a simuita-
neous discussion of the macroscopic diffusivity £ and the spin-lattice relaxation rate
I'; may give information on the diffusion mechanism. Under suitable experimentai
conditions (see section 3) the quantity o which is proportional o the product ', D
is independent of temperature for a simple diffusion mechanism such as in a hopping
process between nearest-neighbour tetrahedral sites in the average frequency descrip-
tion. We discuss the conditions under which our model leads to deviations from the
simple average frequency description, i.e., under what conditions o« becomes temper-
ature dependent, and we show which kind of deviations may be expected. Through a
careful analysis along this line one can hope that existing quantum diffusion theories
can be critically tested and existing microscopic diffusion models further developed.
Finally we will discuss NMR experiments performed on the a-phases of Nb and T in
view of our theoretical considerations.

2. The hopping model

The physical picture on which we base our microscopic diffusion model is related to
Emin’s semi-quantitative treatment of the diffusion of light interstitials (in BCC metals)
(Emin er al 1979} which is a generalization of Holstein’s occurrence probability ansatz
(Holstein 1959). More quantitative calculations for hydrogen in niobium and tantalum
along the same lines have been performed by Klamt and Teichler (1986).

The total transition rate between two sites 7 and j is expressed as

vij = 3 exp(=EY [T [ exp(~ EY [kT) @1
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where v and u denote the various particle states (including the corresponding distor-
tion cioud) localized at sites ¢ and j, EY are the corresponding (minimum) energies,
and ;" are the transition rates between this special pair of states, calculated with the
help of the occurrence probability ansatz. In the following we restrict our treatment
to hopping between nearest-neighbour tetrahedral (T) sites and thus we will skip the
indices ¢ and j and write v for the hopping frequency among T sites. The diffusivity
is given by

D = (a/12)v 2.2)

where e, is the lattice constant. As pointed out in the introduction this averaged
description which uses just one hopping frequency » might be insufficient for the
calculation of spin relaxation rates. Therefore v is split into partial contributions. In
principle we should introduce all states still reasonably localized within one potential
well and ali transitions among all states located at nearest-neigbour sites. In the
notation of Klamt and Teichler (1986) these would be the ground state (g) and the
excited states 1¥,1%,1¢ and 2¥. To simplify our treatment without losing the essential
physics, we consider only two states per site, i.e., the ground state denoted by T and
one further state T which stands for the assembiy of ail localized excited states.
This subdivision is sensible because the hopping rates v}.”, where both x and v are
excited states, are usually comparable in magnitude whereas uﬁ-g, the hopping rate
among ground states, may be orders of magnitude smaller. The possible transitions
between the levels of two nearest-neigbour sites ¢ and j are indicated by the arrows in
figure 1. Besides ground state to ground state transitions we have transitions between
excited states described by e, transitions between a ground state and an excited
state of neigbouring wells (vpyp. and wr.p), which all lead to a jump between two
nearest-neighbour T sites, and intrasite transitions vk, iy, which do not lead to
jumps to neigbouring sites. We may relate vp.p and v to the hopping frequencies
between states introduced in cquation (2.1) (we again omit the indices ¢ and j) by

vppe = S (W) pele” vpp =308 pn =3 pv)  23)
vy v v

where p(1) is the probability that state v+ js occupied. The ground state is denoted
by g and the primed summation sign indicates that the ground state is excluded from
the sum. Detailed balancing gives us

vrip = [pr /o] oy (2.4)
where

pr=1-—pq.

%
Yip

Figure 1. Thansitions between the levels of two nearest-neighbour sites i and j.
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The transitions v4.p., and .. do not appear in (2.1) since they do not lead to
diffusion. ¢ is simply given by 188, The diffusivity may now be written as

2
D= ?—; [pr (vpr + vor) + Py (Ve + vpep)] 25)

which is equivalent to (2.2) with (2.1). In the following sections we shall assume
that the jump distances for all hops, described by vy, vpipe, vpp 80d Ly are all
equal and are given by the distances between nearest-neighbour T sites. Furthermore
we assume that the transitions v, and vhg, do not Jead to a displacement. Both
assumptions are not exactly correct since for the excited states the center of gravity
of the probability distribution for the hydrogen position might be slightly shifted from
the jdeal T position (Klamt and Teichler 1986). Nevertheless (2.5) is still correct since
the various shifts average out in the calculation of D. The spin-lattice relaxation rate
(see section 3), however, could be (slightly) affected by those shifts. We neglect
this complication to keep our treatment 4s simple as possible and the number of
parameters within reasonable bounds.

To obtain the temperature dependence of 'y we still neced that of the hopping
frequencies, In the temperature regime in which we are interested the Arrhenius law

v = LY exp(—~ E*Y [T (2.6)

gives a good description for all wansitions. A better choice for the ground state
to ground state transition would be the multiphonon transition rate of Flynn and
Stoneham (1970) or its modification given by Teichler (1977), but (2.6) is sufficient
for our purposes even for ground state transitions. Therefore we have used

vpr = V88 = A exp(—E8/kT). 2.7
Instead of putting expressions (2.6) into (2.3) and (2.4) we choose

Ve = Ui, exp(~E¢JET) (2-8)
v = Veapexp(—E%/kT) (2.9)

which does not introduce any qualitative modification in the behaviour of I'; com-
pared to the procedure described above but reduces the number of parameters. The
occupation probabilities py and pp., however, will still be cailculated according to
(2.3).

Whether the effects we are looking for do exist or not depends on the ratios
between the intrasite and the intersite transition rates. That »i, in Nb and Ta
can not be much larger than vr. follows from experiment (Richter and Shapiro
1980, Hempelmann et o/ 1981, Rush er af 1984, Mager] ef ol 1986) by attributing the
linewidths of the inelastic neutron scattering spec:ra entirely to lifetime broadening
due t0 vk and by comparing the resulting v4..p with the value of Ve estimated
from a fit of the diffusivity to equation (2.5) (if vpip = wpp = 0 is assumed).
Since .y, is typically almost as high as the Debye frequency, the condition that
vk, should not be much larger than v, in order that the effects to be discussed
occur, does not constitute in our opinion a severe restriction from the viewpoint of
theoretical expectations. For the phonon contribution t0 wi. this is obvious (see
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below) but it seems to be reasonable for a possible contribution due to coupling
to electrons, too. Furthermore, as will be discussed in section 4, vy < v IS
less important for the behaviour of T', than the condition vho < vpp . The latter
condition is frcquently even less restrictive than the former due to the Boltzmann
factor which relates vi.p, to v4,p. Thus taking into account the excited states explicitly
may become relevant for the interpretation of T').

Little theoretical information is available as to the dependence of the intrasite
transition rates on temperature. In the following we only consider contributions to
vhp due to multiphonon transitions. If multiphonon transitions are dominant it is
expected that v, sharply rises at about the Debye temperature 6y as the tem-
perature is increased. A possible additional contribution to w4, due to coupling
to electrons is not expected to show this strong increase at 6, and might be taken
therefore as temperature independent in a crude approximation. In the following
discussion of the temperature dependence of o such a temperature-independent con-
tribution, however, is set equal to zero since the qualitative results can be reproduced
without it. Even for multiphonon transitions we are not aware of any treatment of
intrasite transitions for hydrogen in metals. Because of its simplicity we have chosen
to describe the temperature dependence of the intrasite transitions by the expression

Ui L) exp{A/ET) -1
T = VT fexp{h{w) 7R T) — 117

(2.10)
with

p=Aaf{w)

where {w} is a characteristic phonon frequency of the host lattice (we set it equal
to the Debye frequency wp) and A is the energy of the excited state (the ground
state energy is set equal to zero) or rather a suitable average over the various states
contributing to the ‘state’ T'; yf,fff} is the transition rate vi. as the temperature
T approaches absolute zero. The reverse process” vi., is obtained from detailed
balancing. An expression of that form results for multiphonon transitions between
localized vibrational states with energy difference A if the latiice phonons are treated
in the Einstein approximation (see, e.g., Englman 1979). p gives the order of the
process (number of phonons required to puarantee energy balance). The detailed
form of (2.10) is of little importance for us. We believe, however, that (2.10) gives
a qualitative description of intrasite transitions if they are dominated by particle
phonon couplings, at least at temperatures not too far above . In particular,
(2.10) gives, as expected, a sharp rise of vk, at around the Debye temperature as
the temperature is increased. A possible saturation of vl at higher temperatures,
however, is not described by (2.10). Since p typically has a value of 6-8 for local-
ized H-vibrations in Nb and Ta the processes are of high order and are therefore
expected to be comparably slow (ie., vl < v OF at least not much larger).

3. Calculation of T';

3.1. Theory of relaxation by dipolar coupling

The isotopes p and t and the light ‘isotope’ p* of element no 1 (hydrogen) all have
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spin S = ; and therefore no quadrupole moment. In para- or diamagnetic met-
als (Nb,Ta,V...) I'; of the nuclear spin of these hydrogen isotopes is determined
by the electronic contribution (Korringa 1950) and the dipolar contribution which is
affected by the hydrogen diffusion, and will therefore be of interest to us. For low
hydrogen concentrations, and if there is no tendency for the formation of hydrogen
clusters, the dipolar contribution to I'; is determined by the interaction between the
magnetic moments of the hydrogen nuclei and those of the host nuclei whereas the
interactions between the magnetic moments of the hydrogen nuclei may be neglected.
Under these conditions and for a high applied static magnetic field B, and if the spin
system of the host nuclei remains in equilibrium (both conditions are fulfilled in the
NMR experiments discussed in section 4), the relaxation of the spin polarization of
the hydrogen nuclei is described by a single relaxation rate I'; given by (see Abragam
1962)

Ty = glHINws —wp) + 3NN (wg) + 2T we + wy)] (3.1)
where
g= iR I(I+1)

and wg = v5By, w; = v, B, are the spin precession frequencies of the nuclear
spins of hydrogen (gyromagnetic ratio v¢) or the host atoms (gyromagnetic ratio -+,
spin quantum number /) in the applied field B,. The spectral densities J(#)(w) are
defined by

TP ) = fw exp(iwr) K (7)dr 3.2)

where the K{°)(7) are time correlation functions of certain contributions to the
dipole—dipole coupling which show a random temporal modulation due to atomic
hopping. They are given by

K®(7) = Z(Fé‘;)*(t + T)Fé‘;)(f):’

j
0} _ -3

FY =131~ cos?0,;) (3.3)
(1} _ =3 . .

Foi =ra;sin0,;cos0,; exp(iv,;)
{2} . . —3 _: 2 ‘e

Faj} =rg; sin” 0, exp(i2p,;)

where {) denotes an ensemble average over the stochastic hydrogen motion. The
summation in (3.3) is over all host nuclei. r_; is the distance vector between the
hydrogen and a host nucleus and is time dependent due to atomic motion. 7,
©,; and p,; are the polar coordinates of r,;, the z-axis being parallel to the
applied magnetic field. If the host nuclei are assumed to be immobile (this is a very
good approximation since the mobility of hydrogen is very large compared to that of
the heavy host nuclei) the time dependence of r, . is completely determined by the

hydrogen motion.

o f
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For cubic symmetry
I (w) = AP (w) 4+ BO(w) (O, ) (3.4)
where
f(©,p) =sin?20 4 sin? ©sin® 2

depends on the orientation of the applied magnetic ficld relative to a cube axis and
is given as a function of the polar angles © and ¢ (see Wolf 1975 and Sholl 1986).
The expressions for A‘#) and B(#) may be found in the paper by Woif (1975). In the
following we are interested only in the extreme motional narrowing regime defined
by wyr, € 1 and wsr, <« 1, where 7, is the correlation time characterizing the
fluctuations of the dipolar interactions. In this case their limits as w tends towards
zero may be taken for all spectral densities appearing in (3.1). Furthermore, because
of the relation B{2(w) = - B!V (w) = $ B! (w) (see Wolf 1975), T, is given by

Ty = g[5A°0) + 2410(0) + $.412X(0)] (3.5)

and is therefore independent of the strength and orientation of the applied field. This
holds for any diffusion process. In this regime and for simple diffusion mechanisms
described by a single correlation time, 7, I'; is proportional to 7_ whereas the diffu-
sion coefficient D is proportional to v}, Therefore the product I', D is independent
of 7_. Tb omit individual material parameters one defines

4
a=au£D L . (3.6)

which is dependent on the lattice type and the diffusion mechanism but, as already
stated, is independent of 7. for a simple diffusion mechanism (for nearest-neighbour
hopping among T sites in a rigid BCC Jattice one obtains e = 14.8, see Sankey
and Fedders 1980). Furthermore, since no other temperature-dependent parameter
remains in (3.6) (only the temperature dependence of the lattice relaxation in the
vicinity of hydrogen could introduce a further temperature dependence, which is
expected, however, 10 be extremely small), « is also temperature independent in this
case. Hence, if it is possible to measure simultancously [, and D, and if the effects
on both T'; or D due to the presence of lattice defects or composition variations with
temperature in the o-phase, etc, may be safcly excluded, the temperature dependence
of o may be used to decide whether a simple diffusion mechanism may be ruled out
or not. We would like to emphasize that the diffusion model introduced in section 2
is not simple in this sense. A calculation of « for this model and a comparision
with experimental results may thus provide additional insight to the mechanism of
quantum diffusjon.

3.2. Reciprocal space formalism

Having set the general framework we proceed with the calculation of K(P}(¢) and
J®) (w = 0) which are requircd for the determination of I'; and a. Since the
time correlation functions are totally determined by the hydrogen motion they may
be expressed by means of the conditional probabilities P(Rg + rg — [R, + 7.}, 1)
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to find a hydrogen atom which occupied a ‘site’ Ry + 74 at time ¢ = 0 but later
occupied ‘site’ R, + r, at time ¢. Here R, are lattice vectors, r, characterize
the various interstitial sites within one unit cell (T sites in our case) as well as the
different states localized at a certain interstitial site. Thus =, contains not only the
meaning of a spatial coordinate but the index o also characterizes the state. Later we
will restrict our treatment to the idealized situation where ali states localized within
one interstitial well are characterized by the same vector », independent of the state
index. In writing the conditionai probability as a function of a time difference and 2
difference of spatial coordinates (and state variables)} we assume stationarity (thermal
equilibrium} and spatial homogeneity (we consider only crystalline materials). We
obtain

KO =3 Y 3 Nlp(rg) P(Rs + 1 — (B, +7,],1)

R; Rgtrs Bodra
x FUO(R; — [Rg + 7] ) FP"(R; — [R, +7,]) (3.7

In (3.7) p(rs} is the probability of ﬂnding a hydrogen atom at any site characterized
by g and NV is the number of unit cells. For very low concentrations of the spin-
cartier the conditional probabilities in (3.7) are the solutions of a system of 51mple
rate equations of dimension n/N x n N (where n is the number of different ‘sites’ in
the unit cell) to the initial conditions P(R, + #,,1 = 0) = 6p 4, pa4r,- Making
use of the wanslational symmetry of the crystal one obtains after spatial and (one-
sided) temporal Fourier transformation of these equations a system of n x n algebraic
equations (see, e.g., Fedders and Sankey 1977), namely

D Urat =iw)bay = Vo (@)1 P(g, 7y = 1g,w) = 8,5 (3.8)
-
with
Vyul@) = Y v(R, + v, R, +r,)exp[-iq(R, - R,)] 3.9
R'f
and
ot = Y w(R, v, Byt (3.10)
Rsdrs

In (3.9) and (3.10) v( R, + =, R, +,) is the hopping frequency [rom ‘site’ R, +r.,
to R, + r,. It depends only on the difference R. — IZ,. The Fourier transforms
P{q,r, — rg,w) are defined analogously. Equation (3.8) may be rewritten as

[—iwl + W]P(q,8,w) = I(3) (3.11)

where 1 is the n x n unit matrix and the components of the n x n matrix W are
given by
|24

ay

= T 6o — Vya(a). (3.12)

The vector P(q,3,w) has elements P(q,r., — r5,w); 4 is the running index and
8 is fixed. The inhomogeneity is specified by the vector I(3). Its elements are 6,4
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(running index «), which specify the initial condition that the hydrogen atom started
at a ‘site’ characterized by 4. The solution of equation (3.11) is

P(q,B8,w) = [-iwl + W]~1I(8) (3.13)

or for the components

Pg,r, —Tgyw) =3 [~iwl+ WISl = [—iwl + W] ;. (3.14)
¥

We may now rewrite the spectral densities J(P{(w) in terms of these quantities. We
get

JPwy= N~ sz p(rg)2RP(g, 75 =Ty, w)

Ts To

x F{0)(g,r,)FP"(q,7,) d% (3.15)

where F(?){g,r;) is the spatial Fourier transform of FUN(R, — [R; + 74]). R in
(3.15) denotes that the real part is to be taken. The integration is over the Brillouin
zone. Equation (3.15) could be used to perform all calculations in reciprocal space.
In some cases, however, a partial back transformation into real space turns out to be
more convenient. This leads to

JPN (W) = 12222] p(rz)2RP(g,rg —7,,w)

Ra re Tg

x exp(~ig- R, ) FI(R; - rp) " (R, ~ R, —7,)d%. (3.16)
This formula will be used in the following.

3.3. Expansion in powers of the hopping frequencies

To evaluate equation (3.14) for the model introduced in section 2 we have to invert
a 12 x 12 matrix since we have 12 'sites’ in the unit ¢cell (6 T and 6 T sites).
In general it is not possible to disentangle the q dependence of the inverse matrix
from the dependence on the hopping frequencies v, vrie, €t¢, and on w. Hence,
one has to perform the g integration for very many different combinations of hopping
frequencies and for different frequencies w to calculate /(?)(w) as a function of these
parameters. Since we are interested only in the limit w — 0 the fatter dependence is
unimportant anyway and the matrix to be inverted is just W. To avoid the countless
number of ¢ integrations still required to determine the dependence of I'; on the
hopping frequencies we take refuge in a method discussed already in the appendix of
a paper by Messer ef al (1986). There W' is expanded in powers of the matrix v(q)
with matrix elements v, (g). The q dependence of v, . (q) is contained in geometric
factors of the form exp{ig-r;), where r; is a lattice vector which characterizes the unit
cell reached in a certain hop (the cell [rom which the particle started is taken as the
origin). A term {)? in the expansion thus is a sum of contributions containing factors
of the form exp(ig3_, ;) where the sequence of the »; in the sum characterizes a
possible sequence of s jumps, hence, 3, r, is a lattice vector of the cell (relative to
the cell where the particle started) which is reached with this sequence of s hops.
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The precise position within the start and final cells are given by the position in the
n x n matrix »°. In calculating 22* we obtain the endvectors of all possible diffusion
paths with exactly s hops of a particle starting at a site r4 corresponding to the row
index of this matrix. The occurrence probabilities of the possible endvectors are given
by the prefactors of the exponentials which depend on the hopping frequencies and
the number of different diffusion paths leading to the same result. The g dependence
in all terms is of the form exp(ig- R, ). Thercfore the g space integration in (3.16)
is trivial and is performed using

N-1 Zexp[iq- (B, - R,)] = ég_p,- 3.17)
T

The evaluation of (3.16) consequently is reduced to the calculation of jattice sums
in real space. The selection of the Jattice points R, to be summed over is provided
by (3.17) and the weights are given by the prefactors of the exponentials. In the
paper by Messer et af (1986) the expansion has bcen stopped at s = 6. Diffusion
paths with more than 6 hops and those which lead outside of a diffusion sphere of
radivs +/3a,/2 around the starting site r; have been treated within the diffusion
approximation. We follow the same procedure.

3.4. Contribution of the first 6 hops

Instead of using the 12-component vector P(q,3,w), where G characterizes one of
the 12 different ‘sites’ in a unit cell, it turns out to be more convenient to use the
6-component vectors Pp(g,8,w) and Py.(q,3,w). The components of the first
correspond to the 6 ground state levels of the 6 T sites within a unit cell whereas
the latter comprise the excited levels of the 6 T sites. Furthermore, we distinguish
two types of initial conditions. In the first case initially one of the ground states is
occupied. This will be indicated by using an unprimed symbol to denote the initial
condition, e.g., 3 as above. If initially one of the excited states is occupied we will
use a primed symbol instead, e.g., Pr(q, 5 ,w). We will further use the convention
that the contributions to (g} of the different transitions shown in figure 1 have all,
with the exception of the intrasite transitions v, and vf., the same form. For
instance, the 6x6 block (the 12x 12 matrix v(qg) may be decomposed into four 6x6
blocks) corresponding to the T-T transitions may be written as

vI7 = vprA(g) (3.18)
with
0 gi?'T: 1 0 1 e=ia Ty
eiams 0 1 1 0 el
1 1 0 e~ITy  eldTs 0
A(q) = 0 1 eiq-ry 0 e"'iq'fz 1 (3.19)
1 0 eTirr et 0 1
edrTy  eTigTs 0 1 1 0

which is independent of the hopping frequencies and
r. = (eq/2)(1.~1,-1)
ry = (ap/2)(-1,1,-1)
r, = (ap/2)(-1.-1,1).
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The other blocks of 2(g) are obtained by replacing vy in (3.18) by the three further
hopping frequencies. This is true even when a shift, relative to the ideal T sites, of
the center of gravity of the particle probability distribution of the excited states is
taken into account. This shift is absorbed in the basis vectors and comes into play
only when doing the », sum in (3.16). The quantities Pr(q,3,0) and Pp.(q,5,0)
(we restrict our treatment to the limit w — 0) may be determined from two coupled
systems of 6x6 linear cquations (we do not explicitly display the g dependence of
A{q) in the following)

[VBL ~ uppAlPr(g, 8,0) — [Vt + vrpAlPrdg, 8,0) = I(5)
[l ~ vy Al Py (g, 8.0) ~ [VTT‘I + vrp Al Pp(q,8.0) =0 (3.20)

with
v§ = A(vpy + vpp) + Vi
ve = 4vpr + vpr) + Viop.
The component o of the inhomogeneity I(3) is again given by &,4. Since we

consider here the case where the particle is mmdlly in a ground statc the second
equation is homogeneous. The intrasite hops vi. and viq. do not shift the particle
to another site and appear thercfore only in connection with the unit matrix, The
analogous quantities Py.(q,3'.0} and Py.(q,/3.0) are obtained if the right-hand
side of the first system of equations of (3.20) s sct equal to 0 and the inhomogeneity
I{3") is introduced into the second system. The formal solutions of (3.20) are (the
sequence of operations is unimportant here)

1 UTrTrl + UT;Tf[‘ll — A]—

Pr(q.8,0)= 7 A -I(3) (3.21)
and
[VTT'i + vrp Allvri L+ vpp 148 - A7
i R Ty oo R
with

f=4+vip /ey =4+ Vi o

Yo = 4vpipe + frper

g, =4k, + fk,

g =k /g

95 = vy /va

k) = vippUip — Vqup g

ky = vppvqer + Vprivper + 2upep Vg

Expression (3.21) is not defined in case ail but the intrasite hopping frequencies are
set equal to zero. In this case the calculation has to be done first with w # 0.
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The limit w — 0 leads then to the well-defined expressions for the real part of
P;(q,8,0) and so on. The conditional probabilities Py.(q, 3,0} follow from (3.21)
by the consistent interchange of T and T' in all expressions (thus, e.g., the expression
for Pp(q,8',0) follows from that for Py{q,5,0)) and the replacement of I{3’)
for 1(3). Expression (3.21} are now expanded in powers of A, Again A’ takes into
account all possible paths with s diffusive hops. The non-diffusive intrasite hops viq.,
vi.r are included up to arbitrary order. The result is expressed as

Pr(q,8,0) —Z FEUBY(A()) I(8) (3.22)

and an analogous expression for Pr.(q,/3,0) with f,}"](,@) replaced by f.gf;)( A3). The
prefactors of {A)*® are given by

(3)(5) — (VTrT'(Q'z)a + i fupiy Z(%)S_I(Qa)z) (3.23)
{=0
and
(s)(ﬁ) (V’I‘ - Z(gs)s t (l)(ﬁ) + vpp Z(gs)s— (I~ 1)(5)) (3.24)
i=0 =0

where we define f.}'” = 0. The two other conditional probabilities are obtained by
the substitution described above and are also written in the form of (3.22) introducing
corresponding prefactors f5(8') and f33)(8’). The advantage of using expansion
(3.22) is that the time-consuming calculation of the lattice sums in (3.16) may be
performed independently from f(s)(,é’) and so on and therefore has o be carried
out only once for all conceivable combinations of hopping frequencies. We assume
further that hydrogen is localized point-like at the tetrahedral sites for ground as well
as excited states. The lattice sums associated with (A(g))? are then those required
to calculate I'; for the conventional model of hopping among T sites, which does
not consider the excited states explicitly. Neglecting lattice distortions induced by
hydrogen these have been calculated for s up to 6 (see Schmidt 1982). Putting these
results into (3.16) and then into (3.3) or (3.1) on¢ obtains

Z{p THAB) + (B + p(THLN B + KNG, (3.295)
with the occupation probabilities p(T), p{T’) of the states T and T'. The Iattice

sums G, are given in table 1. If hopping may be described by a single effective
frequency the contribution of the first 6 hops 0 « (see equation (3.6)) is

age = 9.72. (3.26)

Table 1. Lattice sums required to evaluate (3.25) (see Schmidt 1982).

] 0 1 2 3 4 5 6

G, 1953 3806 9699 26220 82200 227200 827300
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3.5. Diffusion approximation

Outside a sphere of radius /3/2a, surrounding the start site 8, P(R, + 7, — Rg—
rg,w) = P(r,w) will be approximated by the solution of the diffusion equation
for the appropriate initial condition, with D given by equation (2.5). Putting these
expressions into the temporal Fourier transform of (3.7), restricting the sum over R,
r, to sites outside the sphere and using (3.1) one obtains the contribution a®* to
e. It depends only on the type of sites which are occupied but not on the diffusion
mechanism. For tetrahedral sites one obtains

w o= 0.77. (3.27)

The diffusion approximation is used again to take into account the contribution of
diffusion paths with more than 6 diffusive nops which, however, end within the sphere.
To avoid double counting, the time interval corresponding to the first sy (s, = 6 in
our case) hops has to be excluded when calculating the Fourier transform. This
interval is given by s, 7, where ¥ is the mean time of stay at a site. We get

Plr,w=0)=12 fm P(r t)dt = %é—‘:i erf[(r* /4 Ds,7)/?) {3.28)

with

T_l = 4PT(UTT + VTT’) + 4PT"(UT'T" + ‘UT'T)‘

The error function may be éxpanded for large s, and small » which allows us to
calculate the lattice sums for arbitrary values of s,. The result is (see Schmidt 1982)

ally = (D7s)"1/21.581 ~ (D7sy)3/%0.0279 + ( D754)~*/%0.0022 (3.29)

In equation (3.29) D is in units of «). For our model we obtain D# = 1/48 which
with s, = 6 leads to

alls = 4.24, (3.30)
Adding the three contributions we get
a = agg + als + o’

which gives o = 14.73 if hopping is between tetrahedral sites and is describable by an
effective frequency. This is in accordance with other treatments (Sankey and Fedders
1980). 1If the effective frequency description is inadequate, a g will depend on the
ratios between the hopping frequencies and o will become temperature dependent.
The diffusion apprommat:on used to determine °‘>s and o works well as
long as vrr S 6(vrr + $vhp) and v € 6(vpip + vder), where thc second
condition is less crmca] (see below). If on the contrary vy > vpr + Frip) and
vpere 3> 6(vper + $u4p) one could split the system into two uncoupled subsystems
Tand T dcscnbed by wo different diffusivities Dy and D, (see the appendix).
To investigate how much our results are influenced by the diffusion approximation
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introduced above we also studied a modified diffusion approximation. It is based on
splitting P(r,t) (of section 3.4} into 4 contributions

P(r,1} = pr ({ Pp(=,8,t) + Prn(r.5,1))
+ o (Pr(r, 8, 0) + (Pp(r, 8,1)). (3.31)

Let us consider Py(r,@,t), the probability of finding a hydrogen atom, which
started at G (the ground state at a site r ) at a distance » = R, +r, — Rg —
rg at a later time ¢. Using the macroscopxc diffusion coeflicient D in a diffusion
approximation for this probablhty is certainly not correct even for times larger than
67 if vpp = 6(vpp + Vi) since a considerable fraction of the particles is still in
a ground state after 6 hops. We describe the motion of particles which are stlll in a
ground state at time ¢ by the diffusivity

al

— 0
Dy = 1o ¥TT (3.32)
The motion of particles that have changed into an excited state and back to the
ground state at least once will be reasonably well described by the macroscopic D.

Using these approximations we obtain
Ppir,8,t) = exp{—Dppt) P(r, Dp. t) + po{1 ~ exp(—Bppe )Y P{r. D, t) (3.33)
with

Dy = dvpr + Vpp-
In (3.33) exp(—&ry.t) gives the probability that until a time ¢ no hop into an excited
state occured, and pr(1 — exp(—Dypet)) I8 the probability that up until ¢ at least
one change into an excited state ook place bur that at ¢ the ground state is occupied
again. P(r,Dy,t) is the solution of the diffusion cquation with diffusivity D, for
the initial condition &, ,. Analogously we have

Prdr.8,1) = (1 — exp(=Dppet))p P(w, Do 1) (3.34)

Similiar relations may be used for the other conditional probabilities. Their contri-
bution to a ¢, however, is small because pr. is considerably smaller than p and in
particular since Dy. (Dy. = (a}/12)vpp.) is much larger than Dq. The temporal
Fourier transforms of (3.33) and (3.34) have to be calculated as in (3.28), however,
the lower integration limit should be taken as 67y (rpp = vy is the average time
between hops if transitions to excited states are excluded) in transforming the first
term of (3.33), or 67 for the second term. If one wants to use the same lattice sums
as calculated already to arrive at (3.29) a similiar expansion has to be made which
again converges reasonably well for large s, small r, and if in addition

BTT'sT -..<,_‘ 1 (3.35)

with 7 = ¥ or 7y depending on whether the lower integration limit is 67 or 67pp
and with

D = dvp + Ve
The result which should replace (3.29) is somewhat lengthy and will not be given here.
Within the parameter regime investigated the numerical results obtained from both
treatments are not 100 different anyway. In the case where inequality (3.35) is violated,
(3.29) should be a good approximation. «°“ should be treated similiarly. Since its

contribution to «, however, is very small and because the numerical modifications to
be expected are even smaller than for o'l we continue to use (3.27).
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Figure 2. o as a function of Fpe /4ppr for different values of vpsps furT given by the
numbers at the various curves and for (a) vh., [oprs = 0.00L, and (b) vip, /vpy =
32. In both cases pp == 0.95.

4. Results and discussion

Since the various hopping frequencies do not drop out from o for the extended
hopping model, o will depend on them. This dependence is shown in figures 2
and 3 for 5% and 0.5% occupation of the excited states. Because tunnelling among
excited states can be expected to be faster than among ground states we have only
investigated the regime vmpyq /vpr 2 1. In this regime o is generally larger than 14.8
the value obtained for a simple diffusion process described by onc hopping frequency
Linpepe

Before discussing the dependence of « on the various model parameters in detail
we want to make some general remarks on thc temperature dependence of o that
follow from its dependence on the hopping frequencies. A main prediction of our
model is an increase in « if the temperature is raised above a certain value given by
the excitation energy of the state T'. The qualitative, but not quantitative, behaviour
is insensitive to the precise form of the temperature laws of the hopping frequencies.
A quantitative discussion will be given later in connection with figures 4-7 which show
o as a function of temperature if the temperature laws (2.7) to (2.10) are used for
the hopping frequencies.

a)

5

PRI B B N B0 0 SR W I SO0 SO0 VO SO0 TN 0 O O W 2 § IETREETETE T rETEEN

0 1 2 3 0 1 2 3
v lbv, v o lbv,

Figure 3. o« as a Renction of Prpo/dwpp wilh the same values for vrepr/por,
Y /vy as in figure 1 but with pr =0.995.

The behaviour of « as a function of Byy. /4vpy (Dpp =4vpr + vy 85 in equa-
tion (3.33)) for ratios vpup. fvpp ranging from 1 to 128 and two values of vip. /vpp i
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Figure 4. Left: o as a function of temperature for uFI'.T = 3.6x 10} =1, E€ =46 meV,
E® =65 meV, £ =10 meV, L0x10*? s~! w7, < 4.6 % 102 571, o700 = 0 and
different ratios ”T'T'/”T"r The excitation energles for the states 1¥, 1 '{1‘} and 2¥
are 117 meV, 165 meV and 227 meV. Right: D = D x 10712 [s}/aZ as a function of
1000/T" calculated for the various parameter sets given above, The same D is obtained
for all the e-curves in Lhe lett-hand sidc of the figure.
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Figure 5. o as a function of temperature for v§.. = 3.6 x 10M ¢=1, 8, = 3.6 x

1022 -1, uT,T = 6.0x 10'F ! (uT,T,/vT,T = 6), '8 = 46 meV, £° = 6.5 meV,
E*& = 10 meV, the same cxcitation cncrgies as in figure 4 are used for various values

of ”’;EP’ID" The same diffusivity as in figure 4 is obtained for all the a-curves.

shown in figure 2 for 5% occupation of the excited states. For large ratios vrup. /vprs
o IS, in the parameter range of figure 2, considerably larger than 14.8 and it decreases
with increasing Dpy. f4vpp. The reason for the high values of « is that I'; does not
decrease in the same proportion as the diffusivity D increases due to the occupation of
the highly mobile excited states (sec the discussion of (3.6)). This is because the first
hops of a hydrogen atom starting from a ground state are to a large extent determined
by v, the hopping frequency between ground states. This Icads to a contribution to
[, which is larger than that calculated with an effective hopping frequency because
it corresponds t0 a smaller diffusivity Dy .. Analogously the contribution due to
those particles starting at an excited state is reduced because .. is larger than the
effective hopping frequency. Since, however, p,, is very small the main contribution
to I'y comes from particles starting at a ground state (for this reason Dy /4vpy i8
the relevant parameter and not By /4vp.q where sy = 4upop + vhop) and the
net effect is an increase of I'; over the value expected from D. The contribution of
vrer to long range diffusion is nevertheless considerable for large vy fopp.

From the above considerations the decrease of o with increasing Do /4vqp and
for large v /vpy is also evident, since fast hopping between ground and excited
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E° =65 meV, £ =40 meV, 2.0 x 10% 57! € o8, < 4.6 % 107 571, wi) =0
and different ratios vl /U5 Excilalion energies are the same as in figere 3. Again
the same diffusivity results for all the er-curves are obtained as in figure 4,

states leads to an enhancement of the initial mobility of particles starting from a
ground state.

For smaller ratios v /vpp, we have 1o distinguish the cases of small and large
values of vip, /vpm.

(i) If the intrasite hopping frequency 1. between states T and T' is much
smaller than uq-p. associated with a transfer to a nearest-neighbour site, o increases
with increasing Dpr. /v and eventually reaches a plateau where o is larger than
14.8. This plateau corresponds to a diffusion process dominated by successive T-T",
T'-T hops and is described by two hopping frequencies vqp, and vy

(ii) If iy, /v, is large, o attains, for not too small bpp /vpy, the numerical
value 14.8 characteristic for T-T hopping described by a single frequency. This means
that the intrasite hops are fast enough to guarantee that the internal level structure
associated with a site may be disregarded.

(iii) If p% is smaller, (see figure 3), we get (compared to figure 2) an overall
reduction of o for large wpip /upp. For small vy fupy and large o /vpr,
however, the plateau reached by o may be even slightly higher than for larger pr..

For a comparison with experiment we need o as & function of temperature.
In order to get this dependence we use the temperature laws (2.7) to (2.10) for
the hopping frequencies. To calculate p, and pp. (sce (2.3)) we fix the excitation
energies at 117 meV for state 1%, 165 meV for 17 and 1%, and 227 meV for state
2¥, These energies have been chosen to be almost identical to those obtained for
the local excitation energies of hydrogen in Nb and Ta by inelastic neutron scattering
(see Richter and Shapiro 1980, Hempelmann ¢ a/ 1981) or the model calculations
of Klamt and Teichler {1986). The results for various parameter sets are shown in
figures 4-7. Besides the excitation encrgies we have fixed v} and E® in all the
figures. Figures 4 and 5 show the temperature variation of o when E° and E°¢ have
very similiar values.

In figure 4 all the curves are calculated with vi 3 = 0. The ratio 3,7, /v@.r has
been varied between 20 and 0.5. The absolute value has been chosen such that the
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Figure 7. o as a funetion of temperature for »dp = 3.6 x 1011 571, w8, = 4.5 x
1002 -1, u.?.,.r = 7.5 x 1011 §~1 (V%’T’/V%’T = 6), £8 = 46 meV, E° = 6.5 meV,
E*8 = 40 meV, and various values of "":S?'I]" The excitation energies and diffusivity are
the same as in figure 4,

diffusivity is the same within the line thickness for all a-curves. The temperature
dependence of D shown in the lower part of figure 4 exhibits a change of slope
and has been chosen to be very close to that obtained for H in Nb by Gorski effect
measurements (see Volkl and Alefeld 1978, Qi ef of 1983).

In figure 5 we set 3.1 /3.y = 6 (see also one of the curves in figure 4) and we

have varied vfr(,?l}. To evaluate v, from (2.10) we use 240 K as the Debye temper-
ature and A = 125 meV as an ‘average’ excitation energy of T'. The temperature
dependence (2.10) is such that vi.. approaches u.}(,oq_z for T' = 0 K but increases dras-
tically with increasing temperature and is a factor of 100 to 400 higher between 400 K
and 500 K. For high values of 14\ the absence of a saturation effect in vé,; leads
t0 a maximum of o which would disappear if the temperature law (2.10) becomes
invalid at higher temperatures and has to be replaced by a law showing saturation at
about these temperatures. We want to emphasize that for 45 = 1019 s=! the intra-
site transition frequency v,y is, over the whole temperature range of our figure, of
the same order of magnitude as the hopping frequency vr.p. between excited states.
Because many phonons are required to take up the energy imbalance associated with
an intrasite transition the ratio v, /vpeq 1S expected to be smaller than unity but
even for this or somewhat larger values a measurable temperature dependence of o
persists. This is because actually vi,./vpr < 1 (where Dppr/4vpp is the relevant
parameter, see above) is the condition for the observation of deviations from the
single-frequency hopping model and this latter condition i in some cases less restric-
tive than the former. The behaviour if £°¢ is considerably larger than E<¢ (figures 6
and 7) is quite similiar to that just described, Again a marked temperature depen-
dence of « is observed for parameters which seem to be reasonable for hydrogen in
metals like Nb or Ta.

Since the same correlation functions needed to calculate '), are also important
in quasielastic neutron scattering we expect that the ‘complexity’ of our model also
shows up in these experiments. This is in agreement with the finding that it is
impossible to explain the experimental results on NbH and TaH (see Lottner e al
1979) within a ‘simple’ diffusion model. A model, however, which can be regarded
as a special case of ours (v = vp = vpp = 0) can indeed be fitted to the data.
However, a temperature-independent value p-. results rom the fit which excludes an
interpretation in terms of excited states. This led the authors to the interpretation
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that T' must be some unspecified mobile state. The temperature independence of
P, however, is likely to be an artefact due to setting vpp = 0. A detailed discussion
of neutron scattering in terms of our model should be carried out in the future.

A further prediction of our model is a marked isotopic effect in «. For deu-
terium and tritivm the level distances are smaller than for hydrogen and therefore
the excited states become important at lower temperatures. A temperature depen-
dence of «, corresponding to that described previously, should therefore begin at
lower temperatures. However, for smaller level distances the ratio vk, /v should
be considerably larger. This would lead to a strong reduction of the amplitude of
the temperature variation of o. On the other hand a very large increase of the ratio
v f bpp cOUld enhance this amplitude. If we compare H and D, v /vy will
increase since for H, and probably even for D, tunnelling betwecn exited states is
nearly adiabatic and therefore vy will not change very much in going from H to
D whereas vpy drops enormously due to its quadratic dependence on the tunnel
integral. For tritium, however, tunnelling between low lying excited states becomes
non-adiabatic. Therefore vy /vpy should not be much larger for tritium than it
is for hydrogen. Since the level spacing for tritium is much smaller than for hydro-
gen, and therefore the tunnel integrals for T-T and T'-T’ transitions in the case of
tritium are substantially less different, it is even conceivable that this ratio becomes
smalier for tritium. These considerations show that a definite conclusion concerning
the amplitude of the variation of o can not be drawn for deuterium. In the case
of tritium, however, a reduction of the effect is very likely. Unfortunately deuterium
cannot be used for these investigations because it has a quadrupole moment and the
quadrupolar contribution to I'; would obscure the cffect. However, one could carry
out experiments on tritium.

Quasielastic neutron scattering should show an analogous isotopic effect con-
cerning the onset and ‘strength’ of deviations from a diffusion process describable
by a single hopping frequency. The onset of the deviation, which shows the most
transparent isotopic effect, unfortunately is too low in temperature to be detected
by quasielastic neutron scattering, but a quantitative comparison of experiments per-
formed on deuterated Nb and T4 with the model would give a dependence of the
model parameters on the isotopic mass which could, together with corresponding
measurements of the diffusivity, be used to check the consistency of the model.

Despite the immense amount of work done to investigate both the macroscopic
diffusivity D (VOIkl and Alefeld 1978, Qi er al 1983, Mauger er af 1981 and Hampele
et al 1989) as well as that done to measure I"| (Messer er ol 1986, Majer er al
1989) in the «-phases of NbH_ and TaH, the experimental situation concerning the
quantity « is still not completely clear. One reason is that both D and T, even for
low hydrogen content, depend on the hydrogen concentration (Hampele 1989). This
dependence may be due to some kind of blocking effect which leads to an influence
on the motion of one hydrogen atom due to othcr hydrogens located nearby, or,
in the case of I';, by an additional relaxation contribution due to the magnetic
dipole—dipole interaction between the moments of neighbouring hydrogen nuclei.
This latter effect turns out to be small for the concentrations investigated, smaller
than expected without the blocking of nearest-neighbour sites (Hampele 1989). These
concentration dependencies show that many of the measurements are still not fully
in the low concentration regime treated in this paper. Therefore a strict comparison
of the experimental results with our calculations is only possible if the concentration
dependence of the hydrogen mobility can be totally absorbed into concentration-
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dependent effective hopping frequencies (ie. if the mean field approximation is
valid). A further probably more serious problem constitutes the influence of lattice
defects (precipitates, dislocations, etc) on I'; and D. It has been found (Hampele
1989) that T", in TaH_ depends on the strength of the applied magnetic field in a
temperature range where, according to the observed diffusivity, we should stif! be on
the high temperature side (w7, < 1) of the relaxation maximum. This was attributed
to the influence of lattice defects on I';. After subtracting the defect contribution
from T'; (no correction of I has been considered) the temperature dependence of o
shown in figure 8 was obtained. The two curves correspond to two extreme frequency
dependencies and thus two different corrections for defects compatible with the data.
The full curve in figure 8 could be explained within our model if we assume that
o for the ‘simple’ diffusion model is reduced from 14.8 to about 10 due to lattice
distortions around H and because of the extension of the hydrogen wavefunction.
A temperature variation below 150 K as indicated by the broken curve, however,
cannot be explained within our model. For NbH, no dcpendence of I'y on the
strength of the applied field has yet been observed. The resulting o is shown in
figure 9 (Hampele 1989). D for a hydrogen content of ¢y =0.05, which is close
to the concentration cy = 0.04 of the I'| measurements, has been used to obtain
this figure. It differs therefore quantitatively, not qualitatively, from that given in the
paper of Majer et al (1989) who used D for ¢, — O instcad. Again the smooth
increase above around 170 K could be explained by our model but the very fast
drop to extremely low o-values below that temperature must have another origin.
One should keep in mind, however, that even above 170 K a comparision with our
calculations still contains some uncertainties due to the dependence of I'; and D on
the hydrogen concentration.
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Figure 8. Temperature varialion of o obtained [rom measurements on TaHr after
comection of I'y for a defect comtribution lor two extreme cases compatible with the
experimentally observed I"y. The curves are interpolations calculated from the data (see
Hampele 1989).

5. Conclusions

We investigated the temperature range where hydrogen diffuses both via non-adiabatic
transitions between the ground states of two nearest-neighbour interstitial wells as
well as via (possibly adiabatic) transitions between excited levels or between ground
states and excited levels. This is, e.g, the case for H-diffusion in Nb and Ta at
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Figure 9. Experimentally determined temperature variation of e for NbH, (see Hampele
1989).

elevated temperatures. We found that for a range of the model parameters, which are
quite possibly relevant for hydrogen diffusion, the existence of these various diffusion
paths has to be taken into account explicitly if one wants to establish the relation
between hopping frequencies and quantities reflecting diffusion on a microscale, like
the hydrogen spin-lattice relaxation rate T, or quasielastic ncutron scattering. It is
important to realize this as a possibility of interpretation if measurements of ', or
quasielastic neutron scattering give indications of a non-simpie diffusion mechanism.

The experimentally observed temperature variation of o ~ [} D (see Messer
et al 1986, Hampele et a! 1989) indeed indicates the cxistence of an o temperature
dependence as predicied by a model which takes excited states into account explicitly.
Cur interpretation of the observed temperature variation of « is completely in terms
of this model which was successfully used 1o describe the change of slope in D versus
temperature (sec Emin er al 1979, Klamt and Teichler 1986). We neither have o
introduce an unspecified mobile phase as has been done by Lottner er al (1979) for
the interpretation of their quasielastic ncutron scattering data, nor is it necessary to
assume occupation of metastable octahedral sites at elevated temperatures as was
done by Messer et al (1986) to account for the observed a.

A quantitative comparison of the model with the data could provide information
about the temperature variation and the absolute values of vy, and vhr, which are
not accessible by an analysis of D alone and further improves on the precision of the
determination of the other parameters. This quantitative comparison has not been
carried out yet, since there are additional effects and still open questions concerning
the dependence of T, on the hydrogen concentration or the influence of defects on
') and D. These questions have to be settled first by further experimental and
theoretical investigations before the quantity o may be used to gain a more detailed
insight into the microscopic diffusion mechanism.
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Appendix

If we neglect any hops between ground and excited states we have two entirely
separated subsystems T and T'. Hopping among the different sites within one of
these systems is described by just one hopping frequency and thus in the extreme
motional narrowing limit the relation between '), and D is given by (3.6) for each
subsystem, ie.,

I'T = arg DF! and I"'IPr = amgD7}

where Do is given by (3.32) and Dy by an analogous relation. If no energy exchange
between the two spin systems corresponding to the systems T and T’ occurs, the two
spin systems would relax independently with relaxation rates I'T and I'T’. In reality,
however, there is always sufficient energy exchange between the two spin systems on
the time scales given by (I'T)~! and (I'T')~! to guarantee a common relaxation,
This energy exchange could be provided, e.g., by some residual hopping between T
and T' states. If this process is very slow compared 0 vpp and prop 30 that it may
be neglected in the calculation of I'; (since it does not inlluence the mean time of
stay at a lattice site) but is still sufficiently fast to guarantee a common relaxation,
then the relaxation rate is given by

Pl = PTF'{‘ + prrT,.

For simplicity we put ¢ = a1 in the foliowing. This is not very restrictive for the
case which we are interested in, where vy, 3> vpp and therefore I'T <« I'T, and
hence assumptions on ap. have very little influence on the resulting I';. 'We obtain
then

2y D% + D3,
o= — = T 74 2 e -
g (p']" + P + PP DT DT‘ G

If the parameters of figures 4 or 6 are used to evaluate this expression we get a
sharp increase of o above 250 K but no leveling off {(or even a reduction) at higher
temperatures as in figures 4-6 where hopping between T and T' is included.
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