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On the theory of spin-lattice relaxation due to the hopping 
motion of light interstitials; the role of excited states 

L Schimmele and A Klamtt 
Max-Planck-lnstitut fir Metallforschung, Insritul fiir Physik, Postfach 800665, D-W-7wO 
Stuttgan 80, Federal Republic of Germany 

Received 4 November 1991 

Abslrnct ?he dipolar mntribulion to the spin-laltice relaxation rale i-1 of spinanying 
light interslilials is d N l a t e d  assuming nearest-neighbour hopping among tetrahedral 
s i t s  of a Bcc lattice. As a new element, which was missing in previous treatments, we 
look info amounl arplicilly the existence of localized =cited states of the intentitials 
The model mnsiders Two dales per sile, i.e.. llie ground state and one exciled slate, 
and lakes into amount transitions belwten Ibe ground slates, the excited slates, and 
beween an excited level and a ground Yale of WO neighbouring interslitial sites as 
well as inwasite transitions tetween ground and excited states of lhe Same site. If the 
intrasite Vansitions from the ground to the excited state are not fast mmpared wilh the 
tunnelling rate among the ground states of neigbouring tetrahedral sila, which is likely 
to be the case for hydrogen in Bcc metals like Nb and 3. lhe extended model predicls 
deviations from the resulls obuincd for the usually mnsidered model which describes the 
inlepstitial motion !q a single effective hopping frequency among tetrahedral sits. The 
product o = r , D ,  in which D is the diffusivity of the inlerstitial, may k considerably 
larger for the extended model than for llie singlc-liopping-frequ="~ model. Moreover 
the various hopping frequencies do not drop out from o as does the effective hopping 
frequencj in llie laller case ?lis may lead lo a strong increase of o wilh temperature 
in mnlrast to L e  tenipcralure independence ol 01 for the single-frequency model. The 
theoretical results are mmpared qualilatively with NMR experimenls performed on the 
o-phases of NbH, and PH,. 

1. Introduction 

During the past few years considerable effort has been spent on the investigation 
of the diffusion of hydrogen and its isotopes in metals. Marked deviations from 
the predictions of the classical rate theory have been found which indicate that the 
diffusion of light particles is affected in an essential manner by quantum effects. In 
many cases this is true even at high temperatures. 

A powerful technique for studying the diffusion of hydrogen (or its isotopes) is 
nuclear magnetic resonance (NMR) (see, e.g., Messer et nl 1986 or Cotts 1978). The 
diffusion of positive muons (p+.  where p+ can actually be regarded as a light hydro- 
gen isotope for our purposes) may be investigated by the related ~ + S R  (muon spin 
rotation, relaxation) method (see, eg., Seeger 1954 or Schenk 1985). The hydrogen 
motion is detected via its effect on the proton (deuteron, triton) spin relaxation rates, 

t Present address: Bayenverke. D-W-5090 Leverkusen. Federal Repub!ic of Germany. 

0953-8984192/133405+24$04.50 0 1992 IOP Publishing U d  3405 



3406 

which is due to the fact that diffusion of spin carriers (the hydrogen nuclei or the pt) 
leads to a random time-dependent modulation of the spin-dependent interaction. In 
order to interpret spin relaxation rates in terms of diffusion processes their relation 
to microscopic diffusion models has to be established. 

For testing theories of quantum diffusion it is desirable to investigate samples 
containing hydrogen in very low concentrations (< 1%) in order to minimize the 
hydrogen-hydrogen interaction which otherwise would make it difficult to identify the 
elementary diffusion processes. It is the purpose of this paper to give expressions 
for the hydrogen spin relaxation rates in this concentration regime and for a certain 
microscopic diffusion model to be specified below. We restrict our treatment to 
situations where hydrogen is dissolved in para- or diamagnetic samples and where the 
spin-lattice relaxation rate, rI, is determined by the interaction between the magnetic 
dipole moments of the hydrogen nuclei and the magnetic moments of the host nuclei. 
This dipolar contribution to r ,  is directly related to the diffusion of hydrogen. We 
further confine ourselves to the regime where diffusion proceeds hy small-polaron 
hopping and we thus exclude coherent propagation. For hydrogen, and even muons, 
the hopping regime extends down to thc lowest temperatures investigated so far with 
the possible exception of local tunnelling centres (see, e.g., Wipf er a/ 1984, 1987). 
RI our knowledge all previous discussions relating nuclear spin relaxation rates 

with small-polaron hopping proceeded as for classical over barrier jumps, Le., first 
one considered a number of sites corresponding to local minima of the quasiparticle 
energy as a function of its spatial coordinates and then one introduced transitions 
among them described by various hopping frcquencics. A difference between quantum 
motion and classical hopping appears only in so far as the temperature and isotopic 
dependence of the hopping frequencies is given in the first case by the laws of 
quantum hopping (see, e.g.. Flynn and Sroncham 1970, Tcichler 1977, Emin .a a1 
1979, Kondo 1984 and Graben er a/ 1956) where& in the second case they are 
given by the classical transition state theolyt. The hydrogen diffusivity is dominated 
at low temperatures by tunnelling transitions between the particle ground states of 
neigbouring sites (Flynn and Stoneham 1970, Teichler 1977 and Grabert er a1 1986). 
At higher temperatures, however, transitions between excited states, well separated 
in energy from the ground state, gain more and morc importance (Emin et a1 1979, 
Klamt and Tkichler 1986). If we want to describe hopping among a particular pair 
of sites by just one hopping frequency we have to dcfine an effective frcquency 
which is an average Over the various contributions weighted according to the thermal 
occupation of the initial states. 

This average description is certainly sufficient as long as one considers diffusion 
over a macroscopic distance as measured, e.g., by the Gorski effect (Qi el a1 1983) or 
by NMR using the pulsed field gradient method (Stejskal and Tanner 1965, Mauger el 
a1 1981, Hampele el a1 1989). Spin relaxation rates, however, are to a large extent de- 
termined by the time correlations between a fcw successive hops. In this case the rate 
of transitions among the various states which are localized within the 'same potential 
well' (at the same site)-they will be called intrasite transitions in the following- 
determines whether the average description is correct. II the intrasite transitions are 
not fast compared to transitions between different sites a dcscription which regards 
the various states localized at a specific site as a single entity and which describes 
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hopping to a neighbouring site by an averaged frequency is in general inadequate. 
Since for hydrogen in metals the energy separation between the lowest excited state 
and the ground state is usually large compared to a typical phonon frequency of the 
host lattice many phonons are required to take up the energy imbalance associated 
with a transition between these levels. Phonon-induced transitions between these lev- 
els are therefore expected to be relatively slow. Additional coupling to electrons will 
speed up the intrasite transitions. However, for the systems considered below (NbH, 
BH), there is experimental evidence (see section 2) that the deexcitation transitions, 
of whatever origin, are not faster, at least, than the tunnelling transitions between 
the excited states in neighbouring wells. We therefore believe that in many instances 
the more detailed treatment outlined below is required. This statement should hold 
similiarly for quasielastic neutron scattering on metal hydrogen systems. Indeed one 
motive for doing the following investigations has been the quasielastic neutron scat- 
tering results on NbH and %H obtained by Lottner et ul (1979) and one of the 
interpretations given by these authors. We therefore investigate the consequences 
that the existence of discrete excited states and the concomitant occurrence of sev- 
eral hopping paths connecting a certain pair of sites may have for spin relaxation 
rates. Specificially we consider hopping among tetrahedral sites in BCC metals like 
Nb and B and we take into account only two states per site, Le., the ground state 
and one further state which exists for several excited states. Our explicit calculations 
contain the simplifying assumptions that hydrogen is localized point-like at tetrahedral 
sites for both states, and furthermore we do not take into account lattice distortions 
in the vicinity of the hydrogen atom. 

As is well known (see, e.g., Cot& 1978 or Fedders and Sankey 1978) a simulta- 
neous discussion of the macroscopic diffusivity D and the spin-lattice relaxation rate 
rl may give information on the diffusion mechanism. Under suitable experimental 
conditions (see section 3) the quantity a which is proportional to the product r , D  
is independent of temperature for a simple diffusion mechanism such as in a hopping 
process between nearest-neighbour tetrahedral sites in the average frequency descnp- 
tion. We discuss the conditions under which our model leads to deviations from the 
simple average frequency description, i.e., under what conditions CY becomes temper- 
ature dependent, and we show which kind of deviations may be expected. Through a 
careful analysis along this line one can hope that existing quantum diffusion theories 
can be critically tested and existing microscopic diffusion models further developed. 
Finally we will discuss NMR experiments performed on the a-phases of Nb and 'B in 
view of our theoretical considerations. 

2. The hopping model 

The physical picture on which we base our microscopic diffusion model is related to 
Emin's semi-quantitative treatment of the diffusion of light interstitials (in BCC metals) 
(Emin er U/ 1979) which is a generalization of Holstein's occurrence probability unsutz 
(Holstein 1959). More quantitative calculations for hydrogen in niobium and tantalum 
along the same lines have been performed by Klamt and Teichler (1986). 

The total transition rate between two sites i and j is expressed as 
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where U and p denote the mrious particle states (including the corresponding distor- 
tion cloud) localized at sites i and j, Er are the corresponding (minimum) energies, 
and v,;* are the transition rates between this special pair of states, calculated with the 
help of the Occurrence probability ansalz. In the following we restrict our troatment 
to hopping between nearest-neighbour tetrahedral 0 sites and thus we will skip the 
indices i and j and write U for the hopping frequency among T sites. The diffusivity 
is given by 

L Schininiele and A Klamf 

D = (ai/12)u (2.2) 

where a, is the lattice constant. As pointed out in the introduction this averaged 
description which uses just one hopping frequency v might be insufficient for the 
calculation of spin relaxation rates. Therefore U is split into partial contributions. In 
principle we should introduce all states still reasonably localized within one potential 
well and all transitions among all states located at nearest-neigbour sites. In the 
notation of Klamt and Xichler (1986) these would be the ground state (g) and the 
excited states lv, l", 1' and 2Y. 7b simplify our treatmcnt without losing the essential 
physics, we consider only two states per site, Le., the ground state denoted by T and 
one further state T' which stands for the assembly of all localized excited states. 
This subdivision is sensible because the hopping rates u r ,  where both p and v are 
excited states, are usually comparable in magnitude whereas U?, the hopping rate 
among ground states, may be orders of magnitude smaller. The possible transitions 
between the levels of two nearest-neigbour sites i and j are indicated by the arrows in 
figure 1. Besides ground state to ground state transitions we have transitions between 
excited states described by u , . ~ , ,  transitions between a ground state and an excited 
state of neigbouring wells (U,,, and U,,,). which all lead to a jump between two 
nearest-neighbour T sites, and intrasite transitions u$,~,u&,,  which do not lead to 
jumps to neigbouring sites. We may relate U,.,, and uTT, to the hopping frequencies 
between States introduced in equation (2.1) (we again omit the indices i and j) by 

uTtT, = ~'~p(/L)/PTtlUPY UTT, = c Iug" PT' -~c' - d v )  (2.3) 
Y P  Y 0 

where p ( u )  is the probability that state U is occupied. The ground state is denoted 
by g and the primed summation sign indicates that the ground state is excluded from 
the sum. Detailed balancing gives us 

uTsT = [PT/PT'l'TT' (2.4) 

where 

PT = 1 - PT,. 

Figure 1. Transitions between the levels of lwo nearest-neighbour sites i and j. 
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The transitions viT, and vkrT do not appear in (2.1) since they do not lead to 
diffuion. uTT is simply given by ugg .  The diffusivity may now be written as 

which is equivalent to (2.2) with (2.1). In the following sections we shall assume 
that the jump distances for all hops, described by vTT, U,,,,, vTT, and u,,, are all 
equal and are given by the distances between nearest-neighbour T sites. Funhermore 
we assume that the transitions v $ , ~  and U$,, do not lead to a displacement. Both 
assumptions are not exactly correct since for the excited states the center of gravity 
of the probability distribution for the hydrogen position might be slightly shifted from 
the ideal T position (Klamt and Teichler 1986). Nevertheless (2.5) is still correct since 
the various shifts average out in the calculation of D. The spin-lattice relaxation rate 
(see section 3). however, could be (slightly) affected by those shifts. We neglect 
this complication to keep our treatment as simple as possible and the number of 
parameters within reasonable hounds. 

'lb obtain the temperature dependence of I-, we still nced that of the hopping 
frequencies. In the temperature regime in which we are interested the Arrhenius law 

gives a good description for all transitions. A better choice for the ground state 
to ground state transition would be the multiphonon transition rate of Rynn and 
Stoneham (1970) or its modification given by Bichler (1977), but (2.6) is suficient 
for our purposes even for ground state transitions. Therefore we have used 

Instead of putting expressions (2.6) into (2.3) and (2.4) we choose 

uTST, = U&,., exp(-Ee/kT) (2.8) 

vT,, = u&,exp(-Ee&/kT) (29) 

which does not introduce any qualitative modification in the behaviour of rl com- 
pared to the procedure described above but reduces the number of parameters. The 
occupation probabilities p, and pT,, however, will still be calculated according to 
(2.3). 

Whether the effects we are looking for do exist or not depends on the ratios 
between the intrasite and the intersite transition rates. That v $ , ~  in Nb and Ta 
can not be much larger than u ~ , ~ ,  follows from experimcnt (Richter and Shapiro 
1980, Hempelmann ef a1 1981, Rush ef ai 1984, Magerl el ai 19%) by attributing the 
linewidths of the inelastic neutron scattering spectra entirely to lifetime broadening 
due to ~ 4 , ~  and by comparing the resulting v + , ~  with the value of I+,, estimated 
from a fit of the diffusivity to equation (2.5) (if vT,T = vTT, 0 is assumed). 
Since uT,,, is typically aImost as high as the Debye frequency, the condition that 

should not be much larger than u ~ , ~ , ,  in order that the effects to be discussed 
occur, does not constitute in our opinion a severe restriction from the viewpoint of 
theoretical expectations. For the phonon contribution to v + , ~  this is obvious (see 
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below) but it seems to be reasonable for a possible contribution due to coupling 
to electrons, too. Furthermore, as will be discussed in section 4, < u ~ , ~ ,  is 
less important for the behaviour of r, than the condition ukT, < vTT . The latter 
condition is frequently even less restrictive than the former due to the Boltzmann 
factor which relates to Thus taking into account the excited states explicitly 
may become relevant for the interpretation of rl. 

Little theoretical information is available as to the dependence of the intrasite 
transition rates on temperature. In the following we only consider contributions to 
u.+,~ due to multiphonon transitions. If multiphonon transitions are dominant it is 
expected that ubrT sharply rises at about the Debye temperature 8, as the tem- 
perature is increased. A possible additional contribution to U&,* due to mupling 
to electrons is not expected to show this strong increase at OD and might be taken 
therefore as temperature independent in a crude approximation. In the following 
discussion of the temperature dependence of 01 such a temperature-independent con- 
tribution, however, is set equal to zero since the qualitative results a n  be reproduced 
without it. Even for multiphonon transitions we are not aware of any treatment of 
intrasite transitions for hydrogen in metals. Because of its simplicity we have chosen 
to describe the temperature dependence of the intrasite transitions by the expression 
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with 

P = A / W  

where (w) is a characteristic phonon frequency of the host lattice (we set it equal 
to the Debye frequency wD) and A is the energy of the  excited state (the ground 
state energy is set equal to zero) or rather a suitable average over the various states 
contributing to the 'state' T; v!,$! is the transition rate u + , ~  as the temperature 
T approaches absolute zero. The reverse process U;=, is obtained from detailed 
balancing. An expression of that form results for multiphonon transitions between 
locaiized vibrational states with energy difference A if the lattice phonons are treated 
in the Einstein approximation (see, e.g., Englman 1979). p gives the order of the 
process (number of phonons required to guarantee energy balance). The detailed 
form of (2.10) is of little importance for us. We believe, however, that (2.10) gives 
a qualitative description of intrasite transitions i f  they are dominated by particle 
phonon couplings, at least at temperatures not too far above 8,. In particular, 
(2.10) gives, as expected, a sharp rise of u + , ~  at around the Debye temperature as 
the temperature is increased, A possible saturation of u + , ~  at higher tempcratures, 
however, is not described by (2.10). Since p typicaIIy has a value of 6-S for local- 
ized H-vibrations in Nb and Th the processes are of high order and are therefore 
expected to be comparably slow (i.e., u + , ~  < or at least not much larger). 

3. Calculation of r, 
3.1. Theory of relaration by dipolar coupling 

The isotopes p and t and the light 'isotope' p+ of element no 1 (hydrogen) all have 
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spin S = $ and therefore no quadrupole moment. In para- or diamagnetic met- 
als (Nb,Ta,V ...) rl of the nuclear spin of these hydrogen isotopes is determined 
by the electronic contribution (Korringa 1950) and the dipolar contribution which is 
affected by the hydrogen diffusion, and will therefore be of interest to us. For low 
hydrogen concentrations, and if there is no tendency for the formation of hydrogen 
clusters, the dipolar contribution m rl is determined by the interaction between the 
magnetic moments of the hydrogen nuclei and those of the host nuclei whereas the 
interactions between the magnetic moments of the hydrogen nuclei may be neglected. 
Under these conditions and for a high applied static magnetic field Bo and if the spin 
system of the host nuclei remains in equilibrium (both conditions are fulfilled in the 
Nhm experiments discussed in section 4), the relaxation of the spin polarization of 
the hydrogen nuclei is described by a single relaxation rate rl given by (see Abragam 
1962) 

rl = g[&J(o ) (ws  - w I )  f $ J ” ) ( w s )  t j?J(”(w5 + w l ) ]  

g = y ; y : h * / ( I  t 1) 

(3.1) 

where 

and ws = rsBo,  wI  = y,Bo are the spin precession frequencies of the nuclear 
spins of hydrogen (gyromagnetic ratio ys) or the host atoms (gyromagnetic ratio y I ,  
spin quantum number I) in the applied field Bo. The spectral densities J ( p ) ( w )  are 
defined by 

m 

J ( p ) ( w )  = e x p ( i w r ) l i ( P ) ( r ) d r  (3.2) L 
where the I i ( p ) ( r )  are time correlation functions of certain contributions to the 
dipoledipole coupling which show a random temporal modulation due to atomic 
hopping. They are given by 

(3.3) 

where () denotes an ensemble average Over the stochastic hydrogen motion. The 
summation in (3.3) is over all host nuclei. T , ~  is the distance vector between the 
hydrogen and a host nucleus and is time dependent due to atomic motion. rQ;, 

and $ouj are the polar coordinates of v U j ,  the z-axis being parallel to the 
applied magnetic field. If the host nuclei are assumed to be immobile (this is a very 
good approximation since the mobility of hydrogen is very large compared to that of 
the heavy host nuclei) the time dependence of ruj is completely determined by the 
hydrogen motion. 
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For cubic symmetry 

where 

(3.4) 

depends on the orientation of the applied magnetic field relative to a cube axis and 
is given as a function of the polar angles 0 and 'p (see Wolf 1975 and Sholl 1986). 
The expressions for A ( p )  and B(p) may be found in the paper by Wolf (1975). In the 
following we are interested only in the extreme motional narrowing regime defined 
by w,rc Q 1 and wS+< < 1, where T~ is the correlation time characterizing the 
fluctuations of the dipolar interactions. In this case their limits as w tends towards 
zero may be taken for all spectral densities appearing in (3.1). Furthermore, because 
of the relation B ( 2 ) ( w )  = - B ' l ) ( w )  = ' B ' o ' ( ~ )  P (see Wolf 1975), r l  is given by 

r l  = g[&A"'(O) + $ A ( ' ' ( O )  + :A(?)(O)]  (3.5) 

and is therefore independent of the strength and orientation of the applied field. This 
holds for any diffusion process. In this regime and for simple diffusion mechanisms 
described by a single correlation time, rc, rl  is proportional to rc whereas the diffu- 
sion coeficient D is proportional to r;'. Thererore the product r , D  is independent 
of T ~ .  ?b omit individual material paramcters one defines 

(3.6) 

which is dependent on the lattice type and the ditfusion mechanism but, as already 
stated, is independent of T~ for a simple diffusion mechanism (for nearest-neighbour 
hopping among T sites in a rigid BCC lattice one obtains cu = 14.8, see Sankey 
and Fedders 1980). Furthermore, sincc no other temperature-dependent parameter 
remains in (3.6) (only the temperature dependence of the lattice relaxation in the 
vicinity of hydrogen could introduce a further temperature dependence, which is 
expected, however, to be extremely small), a is also temperature independent in this 
use. Hence, if it is possible to measure simultaneously I', and D, and if the effects 
on both r l  or D due  to the presence of lattice defects or composition variations with 
temperature in the cu-phase, ctc, may be safely excluded, the temperature dependence 
of a may be used to decide whether a simple diffusion mechanism may be ruled out 
or not. We would like to emphasize that the diffusion model introduced in section 2 
is not simple in this sense. A calculation of a for this modcl and a comparision 
with experimental results may thus provide additional insight to the mechanism of 
quantum diffusion. 

3.2. Reciprocal space fornialisnt 

Having set the general framework we proceed with the calculation of I i - ( P ) ( t )  and 
J(+')(w = 0) which are required for the determination of T1 and a. Since the 
time correlation functions are totally determined by the hydrogen motion they may 
be expressed by means of the conditional probabilities P(Ra + ra - [n, + ra], t )  
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to find a hydrogen atom which occupied a ’site’ R, $. r p  at time t = 0 but later 
occupied ‘site’ R, + r ,  at time t .  Here R, are lattice vectors, T ,  characterize 
the various interstitial sites within one unit cell (T sites in our case) as well as the 
different states localized at a certain interstitial site. Thus T ,  contains not only the 
meaning of a spatial coordinate but the index a also characterizes the state. Later we 
d l  restrict our treatment to the idealized situation where all states localized within 
one interstitial well are characterized by the same vector r ,  independent of the state 
index. In writing the conditional probability as a function of a time difference and a 
difference of spatial coordinates (and state variables) we assume stationarity (thermal 
equilibrium) and spatial homogeneity (we consider only crystalline materials). We 
obtain 

K ( P ) ( t )  = N-’p(Tp)P(R, + T g  - [R,  T e ] , t )  

R, R ~ t v R , t r ,  

x F ( P ) ( R j  - [R, + T ~ ] ) F [ ~ ’ * ( R ,  - [R,  + T , ] ) .  (3.7) 

In (3.7) p ( r p )  is the probability of finding a hydrogen atom at any site characterized 
by T~ and N is the number of unit cells. For very low concentrations of the spin- 
carrier the conditional probabilities in (3.7) are the solutions of a system of simple 
rate equations of dimension n N x 91 N (where n is the number of different ‘sites’ in 
the unit cell) to the initial conditions P(R, + r , , t  = 0) = 6k+,a,R#+rS. Making 
use of the uanslational symmetry of the crystal one obtains after spatial and (one- 
sided) temporal Fourier transformation of these equations a system of n x n algebraic 
equations (see, e.g., Fedders and Sankey 1977), namely 

C[(ril -iw)6,, - ~ - , , ( q ) I p ( q ~ r ~  - ~ g , w )  = bap (3.8) 
’I 

with 

and 

r;’= u ( R , + T , , R , + T , ) .  
R s t r s  

(3.10) 

In (3.9) and (3.10) v(R, +T, ,  R, +T, )  is the hopping frequency from ‘site’ R, +T,  

to R, + T,. It depends only on the difference R, - X,. The Fourier transforms 
P ( q , r ,  - T, ,w)  are defined analogously. Epuation (3.8) may be rewritten as 

[ - i w l +  wlP(s ,P ,w)  = I ( @ )  (3.11) 

where 1 is the n x n unit matrix and the components of the n x n matrix W are 
given by 

WO, = c’4, - v, ,(q).  (3.12) 

The vector P ( q , P , w )  has elements P ( q , T ,  - T ~ , w ) ;  y is the running index and 
p is fixed. The inhomogeneity is specified by the vector I ( p ) .  Its elemenv; are 6,, 
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(running index a), which specify the initial condition that the hydrogen atom started 
at a ‘site’ characterized by T # .  The solution of equation (3.11) is 

L Schinimele and A Klamr 

p(q ,p ,w)  = [ - iwl+  w ~ - ~ r ( p )  (3.13) 

or for the components 

P ( q , r ,  - r B , w )  = c [ - i w l +  W];!,a,, = [-iwl + W]$. (3.14) 

We may now rewrite the spectral densities J ( p ) ( w )  in terms of these quantities. We 
get 

7 

x f i P ’ ( 9 ,  7 , 1 j ) F ( p ) ’ ( q , r o )  d3q (3.15) 

where F‘P)(q ,r , )  is the spatial Fourier transform of F‘pl(Rl - [R, + T,]). R in 
(3.15) denotes that the real part is to be taken. The integration is over the Brillouin 
zone. Equation (3.15) could be used to perform all calculations in reciprocal space. 
In some cases, however, a partial back transformation into real space turns out to be 
more convenient. This leads to 

x e x p ( - i q . n , ) F ” ‘ ) ( R ,  - T ~ ) F ( ” ) * ( R ,  1 - R ,  - v O ) d 3 q .  (3.16) 

This formula will be used in the following. 

3.3. Erpansion in powers of the hoppingficqiiencics 

RI evaluate equation (3.14) for the model introduced in section 2 we have to invert 
a 12 x 12 matrix since we have 12 ‘sites’ in the unit cell (6 T and 6 T’ sites). 
In general it is not possible to disentangle the q dependence of the inverse matrix 
from the dependence on the hopping frequencies wTT, u ~ . ~ , ,  etc, and on LO. Hence, 
one has to perform the q integration for very many different combinations of hopping 
frequencies and for different frequencies w to calculate h’[p)(w) as a €unction of these 
parameters. Since we are interested only in the limit w - 0 the latter dependence is 
unimportant anyway and the matrix to be inverted is just W. 7b avoid the countless 
number of q integrations still required to determine the dependence of r l  on the 
hopping frequencies we take refuge in a method discussed already in the appendix of 
a paper by Messer ef a! (1986). There W-’ is expanded in powers of the matrix v ( q )  
with matrix elements w T 0 ( q ) .  Thc q dependence of u7,(q) is contained in geometric 
factors of the form C X ~ (  $vi), where v i  is a lattice wctor which characterizes the unit 
cell reached in a certain hop (the cell lrom which the particle started is taken as the 
origin). A term (Y)” in the expansion thus is a sum of contributions containing factors 
of the form e x p ( i q z i  ri) where the sequence of the ri in the sum characterizes a 
possible sequence of s jumps, hence, E, T, is a lattice vector of the cell (relative to 
the cell where the particle started) which is reached with this sequence of s hops. 
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The precise position within the start and final cells are given by the position in the 
n x n matrix U*. In calculating U* we obtain the endvectors of all possible diffusion 
paths with exactly s hops of a particle starting at a site vP corresponding to the TOW 
index of this matrix. The Occurrence probabilities of the possible endvectors are given 
by the prefactors of the exponentials which depend on the hopping frequencies and 
the number of different diffusion paths leading to the Same result. The q dependence 
in all terms is of the form exp( iq .  ItT). Thercfore the q space integration in (3.16) 
is trivial and is performed using 

The evaluation of (3.16) consequently is reduced to the calculation of lattice sums 
in real space. The selection of the lattice points R, to be summed over is provided 
by (3.17) and the weights are given by the prefactors of the exponentials. In the 
paper by Messer a al (1956) the expansion has been stopped at s = 6. Diffusion 
paths with more than 6 hops and those which lead outside of a diffusion sphere of 
radius \/3uo/2 around the starting site vd have been treated within the diffusion 
approximation. We follow the same procedure. 

3.4. Contribution of the first 6 hops 
Instead of using the 12-component vector P ( q , ) 3 - w ) ,  where p characterizes one of 
the 12 different 'sites' in a unit cell, it turns out to be more convenient to use the 
6-component vectors PT(q,p,w) and PT,(q,p,w). The components of the first 
correspond to the 6 ground state levels of the 6 T sites within a unit cell whereas 
the latter comprise the excited levels of the 6 T sites. Furthermore, we distinguish 
two types of initial conditions. In the first case initially one of the ground states is 
occupied. This will be indicated by using an unprimed symbol to denote the initial 
condition, e.g., p as above. If initially one of the excited states is occupied we will 
use a primed symbol instead, e+, PT(q,@' ,w) .  We will further use the convention 
that the contributions to v(q )  of the different transitions shown in figure 1 have all, 
with the exception of the intrasite transitions U&, and v ; . ~ ,  the same form. For 
instance, the 6x6  block (the 12x 12 matrix U( q )  may be decomposed into four 6x6  
blocks) corresponding to the T-T transitions may be witten as 

vTT = vTTA( q )  (3.18) 

with 
1 0 

0 
0 e - w P r  eip..r, 0 \ elq. tu 0 1 1 

which is independent of the hopping frequencies and 

T g  = ( a o / 2 ) ( l , - l , - l )  

Ty = ( Q o / 2 ) ( - 1 , 1 , - 1 )  

T Z  = ( u o / 2 ) ( - l , - l , l )  

(3.19) 
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The other blocks of u(q) are obtained by replacing vTT in (3.18) by the three further 
hopping frequencies. This is true even when a shift, relative to the ideal T sites, of 
the e n t e r  of gravity of the particle probability distribution of the excited states is 
taken into account. This shift is absorbed in the basis Vectors and comes into play 
only when doing the T ,  sum in (3.16). The quantities PT(q,p,O) and PT,(g,p,O) 
(we restrict our treatment to the limit w -* 0) may be determined from WO coupled 
systems of 6 x 6  linear equations (we do not explicitly display the q dependence of 
A(q)  in the following) 

L Schininielc and A Klanir 

[ ~ , ~ ~ - ~ T T A ] P T ( ~ ~ P I O ) - [ ~ ~ , T I  + vTTAlPT'(q,P,o) = I ( P )  
[ U , ~ ~ - ~ T ' T ' A ] P T ' ( ~ , P . O ) - [ ~ ? . T , ~  t v~~jA]P~(qrPro) = o  (3.20) 

with 

v: = 4(v,, + U,,,) t vh., 
v," = 4 ( ~ T v p  + t +r. 

The component a of the inhomogeneity I ( 0 )  is again givcn by ~5,~- Since we 
consider here the case where the particle is initially in a ground state the second 
equation is homogeneous. The intrasitc hops v!~,.,. and vkT, do not shift the particle 
to another site and appear thercfore only in connection with the unit matrix. The 
analogous quantities PT(g,p' .O)  and PT,(g,fl',O) are obtained if the right-hand 
side of the first system of cquations of (3.20) B sct cqual to U and the inhomogeneity 
I(j3') is introduced into the second system. The formal solutions of (3.20) are (the 
sequence of operations is unimportant here) 

(3.21) 

and 

with 

f = 4 t V&/VTT' = 4 + V;.,T/VT,T 

v, = 4YT',' + .fY,'q. 

91 = 4k, + fk.? 
= k, /Si 

gs = I va 
kl = Y , ~ T L + ~  - V T . T V ~ - ~  

k, = + ~ ~ ~ , v ~ , ~ ,  + 2v.,,,.v.,,,. 

Expression (3.21) is not defined in case all but the intrasite hopping frequencies are 
set equal to zero. In this case the calculation has to be done first with w # 0. 
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The limit w + 0 leads then to the well-defined expressions for the real part of 
PT(q,p, 0) and so on. The conditional probabilities PT,(q, p’,O) follow from (3.21) 
by the consistent interchange of T and ‘I” in all expressions (thus, e.g., the expression 
for PT,(q,p,O) follows from that for PT(q,p,O)) and the replacement of I ( p )  
for I ( p ) .  Expression (3.21) are now expanded in powers of A. Again A’ takes into 
account all possible paths with s diffusive hops. The non-diffusive intrasite hops v&,, 

are included up to arbitrary order. The result is expressed as 

and an analogous expression for PT,(q,p,O) with f$’(p) replaced by f$’(p). The 
prefactors of (A). are given by 

(3.23) 

and 

where we. define f$-’) = 0. The two other conditional probabilities are obtained by 
the substitution described above and are also written in the form of (3.22) introducing 
corresponding prefactors f$’(p’) and f$’(p’). The advantage of using expansion 
(3.22) is that the time-consuming calculation of the lattice sums in (3.16) may be 
performed independently from f $ ’ ( p )  and so on and therefore has to be carried 
out only once for all conceivable combinations of hopping frequencies. We assume 
further that hydrogen is localized point-like at the tetrahedral sites for ground as well 
as excited states. The lattice sums associated with ( A ( q ) ) s  are then those required 
to calculate r, for the conventional model of hopping among T sites, which does 
not consider the excited states explicitly. Neglecting lattice distortions induced by 
hydrogen these have been calculated for s up to 6 (see Schmidt 1982). Putting these 
results into (3.16) and then into (3.5) or (3.1) one obtains 

with the occupation probabilities p(T),  y(T’) of the states T and T’. The lattice 
sums G, are given in table 1. If hopping may be described by a single effective 
frequency the contribution of the first 6 hops to a (see equation (3.6)) is 

ags = 9.72. (3.26) 

Table 1. Lattice sums required 10 evaluate (3.25) (see Schmidl 1982). 

s o  1 2 3 4 5 ti 

G, 195.3 380.6 969.9 26220 8220.0 22720.0 82730.0 
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3.5. Difision approximation 
Outside a sphere of radius &/?ao surrounding the start site 0, P ( R ,  + r e  - Rs - 
T @ , w )  f P ( r , w )  will be approximated by the solution of the diffusion equation 
for the appropriate initial condition, with D given by equation (2.5). Putting these 
expressions into the temporal Fourier transform of (3.7), restricting the sum over R,, 
r ,  to sites outside the sphere and using (3.1) one obtains the contribution aoUt to 
a. It depends only on the type of sites which are occupied but not on the diffusion 
mechanism. For tetrahedral sites one obtains 

L Schimmele and A Hamt 

=out - - 0.77. (3.27) 

The diffusion approximation is used again to take into account the contribution of 
diffusion paths with more than 6 diffusive hops which, however, end within the sphere. 
Ilt, avoid double counting, the time interval corresponding to the first so (so = 6 in 
our case) hops has to be excluded when calculating the Fourier transform. This 
interval is given by .sot, where 5 is the mean time of stay at a site. We get 

(3.28) 

with 

= 4pT(vTT + vT1.') f 4?'T'(YT'T' + YT'T).  

The error function may be expanded for large so and small r which allows us to 
calculate the lattice sums for arbitrary values of so. The result is (see Schmidt 1982) 

ay6 = (D?sG)-'/*1.581 - ( D S ~ , ) - ~ / ' O . 0 2 7 9  + ( D 5 ~ , ) - ~ / ? 0 . 0 0 2 2  (3.29) 

In equation (3.29) D is in units of U:. For our model we obtain D i  = 1/48 which 
with so = 6 leads to 

> 6  = 4 . 2 4 .  (3.30) 

Adding the three contributions we get 

a = + + a0"t 

which gives a = 14.73 if hopping is between tetrahedral sites and is describable by an 
effective frequency. This is in accordance with other treatments (Sankey and Fedders 
1980). If the effective Irequency description is inadequate, aG6 will depend on the 
ratios beween the hopping Erequencies and c1 will become temperature dependent. 

The diffusion approximation used to determine ai" and aoUt worh well as 
long as vTT < 6(vTT, + + v $ ~ , )  and U,,,, 4 G ( Y ~ , ~  +>6+v$.T), where the second 
condition is less critical (see below). If on the contrary uTT > 6(vT,, + i v ; , )  and 
uTrTt >> 6(vT,, + $U$,,) one could split the system into WO uncoupled subsystems 
T and T described by two different diffusivities D, and D.,, (see the appendix). 
'RI investigate how much our resulrs are influenced by the diffusion approximation 
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introduced above we also studied a modified diffusion approximation. It is based on 
splitting P ( T ,  t )  (of section 3.4) into 4 contributions 
P(T,t)=pT((PT(I.,iOit)+ PT#(T.@,f)) 

+pT’(PT(T,fl>t) f (PT’(T,P‘,t)). (3.31) 
Let us consider PT(r ,  p ,  t), the probability of finding a hydrogen atom, which 

started at 0 (the ground state at a site v a )  at a distance T = R, + T* - Re - 
T~ at a later time t .  Using the macroscopic diffusion coellicient D in a diffusion 
approximation for this probability is certainly not correct even for times larger than 
6 t  if um 2 6(uTT, + Y . + ~ , )  since a considerable fraction of the particles is still in 
a ground state after 6 hops. We describe the motion of particles which are still in a 
ground state at time t by the diffusivity 

DT = ~ V T T .  4 (3.32) 

The motion of particles that have changed into an excited state and back to the 
ground state at least once will be reasonably well described by the macroscopic D. 
Using these approximations we obtain 
PT(r,P.t) =exp(-~~,,2)P(~,D~.t) + p T ( l  -exp(-DTT,l))P(~.D,t) (3.33) 
with 

DTT1 = 4UTT, + U&, . 
In (3.33) exp(-DTT,t) gives the probability that until a time t no hop into an excited 
state occured, and p,(l - exp(-DTr,t)) is the probability that up until t at least 
one change into an excited state took place but that a t  2 the ground state is occupied 
again. P(r, D T , t )  is the solution of the diffusion quation with diffusivity D, for 
the initial condition 67,w Analogously we have 

PT,(v,P?t) = ( 1  - e x l , ( - ~ , , , , 1 ) ) ~ ~ , P ( ~ , D , f )  (3.34) 
Similiar relations may be used for the other conditional probabilities. Their contri- 
bution to a,6, however, is small because p,, is considerably smaller than pT and in 
particular since D,, (DT, = ( ~ : / 1 2 ) v ~ , ~ , )  is much larger than D,. The temporal 
Fourier transforms of (3.33) and (3.34) have to be calculated as in (3.28). however, 
the lower integration limit should be taken as 6 ~ , , . ~  (rTT = ivTT is the average time 
between hops if transitions to excited states are excluded) in transforming the first 
term of (3.33), or 6 t  for the second term. If one wan& to use the same lattice sums 
as calculated already to arrive at (3.29) a similiar expansion has to be made which 
again converges reasonably well for large so. small r, and if in addition 

with r = i or T ~ ,  depending on whether the lower integration limit is 67 or 6rm 
and with 

OTT,6.r < 1 (3.35) 

DTT’ = 4 VTT, + v;.T,. 
The result which should replace (3.29) is somewhat lengthy and will not be given here. 
Wtthin the parameter regime investigated the numerical results obtained from both 
treatments are not too different anyway. In the case where inequality (3.35) is violated, 
(3.29) should be a good approximation. aoUt should be treated similiarly. Since its 
contribution to a, however, is very small and because the numerical modifications to 
be expected are even smaller than for we continue to use (3.27). 
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Figure 2 o as a function o l  CTT,/4wr~ for different values of U T ~ ~ , / U T T  given by the 
numbers at the various NIVES and for ( a )  Y & ~ , / u T T '  = 0.W1, and ( b )  Y&~,/YTTC = 
32. In both cases PT = 0.95. 

4 Results and discussion 

Since the various hopping frequencies do not drop out from a for the extended 
hopping model, a will depend on them. This dependence is shown in figures 2 
and 3 for 5% and 0.5% occupation of the excited states. Because tunnelling among 
excited states can be expected to bc faster than among ground states we have only 
investigated the regime uT,T,/uTT 2 1. In this regime a is generally larger than 14.8 
the value obtained for a simple diffusion process dcscribed by one hopping frequency 
V T T  

Before discussing the dependence of c1 on the various model parameters in detail 
we want to make some general remarks on thc temperature dependence of CK that 
follow from its dependence on the hopping frequencies. A main prediction of our 
model is an increase in a if the temperature is raised above a certain value given by 
the excitation energy of the state T. The qualitative, but not quantitative, behaviour 
is insensitive to the precise form of the temperature laws of the hopping frequencies. 
A quantitative discussion will be given later in connection with figures 4-7 which show 
a as a function of temperature if the temperature laws (2.7) to (2.10) are used for 
the hopping frequencies. 

b) f f C  a) f f E  

Figure 3. 
~ ; ~ ~ / v ~ ~ r  as in figure 1 but with PT =0.095. 

o as a funclion of L + ~ / ~ V T T  wilii lhe same values for UT'TCIWTT, 

The behaviour of a as a function of DTT,/4uTT (+,., =~4u,, + u $ ~ ,  as in equa- 
tion (3.33)) for ratios vT,,,/uT, ranging from l to 128 and two values of u&,/uTT, is 
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Figure 4 kf1:  0: as a function of temperature for vFT = 3 . 6 ~  10" s-', Ea =46 meV, 
Ea =6.5 meV, EC8 =10 meV, 1 . 0 ~ 1 0 ' ~  s-' < U!,,, < 4.6 x IOJ2 s-l, Y ' ( ' )  = 0 and 
different ratios v$,,,/u;,,. me ~(cilation energm for the s1ates 1 Y ,  l'T?;and 29 

are 117 meV, 165 meV and 227 meV Right: b = D x IO-'' [SI/.; as a function of 
lOOO/T calculaled for the wlious parameter sets given ahve .  The same D is obtained 
for all the acurves in the lefi-hand side of the figure. 
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FIgure 5. OT as a function of temperature for U& = 3.6 x 10" s-', U;,,, = 3.6 x 
IOIz s-', v ; , ~  = 6 . 0 ~  loi' s-' (v;,~,/u;,,,= 6). Eg = 4i meV, Ee = 6.5 meV, 
E'S = 10 meV, [lie same [xcitiltion energies as in Ogure 4 are used for various values 
of U$,. The Same dillusivily as in figure 4 IS obtained lor all lhe mcumes. 

shown in figure 2 for 5% occupation of the excited states. For large ratios V ~ , ~ , / U ~ ,  

CI is, in the parameter range of figure 2, considerably larger than 14.8 and it decreases 
with increasing OTT,/4vTT. The reason for the high values of oi is that r, does not 
decrease in the same proportion as the diffusivity U increases due to the  occupation of 
the highly mobile excited states (see the discussion of (3.6)). This is because the first 
hops of a hydrogen atom starting from a ground state are to a large extent determined 
by uTT, the hopping frequency between ground states. This leads to a contribution to 
rl which is larger than that calculated with an effective hopping frequency because 
it corresponds to a smaller diffusivity &,.. Analogously the contribution due to 
those particles starting at an excited state is reduced because is larger than the 
effective hopping frequency. Since, however, p,, is very small the main contribution 
to rl comes from particles starting at a ground state (for this reason qTT,/4vTT is 
the relevant parameter and not FT,T/4vT,T, where = 4vTfT + u,+,~) and the 
net effect is an increase of r l  over the value expected from D .  The contribution of 
uTjT, to long range diffusion is nevertheless considerable for large U ~ , ~ , / V ~ .  

From the above considerations the decrease of oi with increasing FTT,/4uTT and 
for large vT,T,/~TT is also evident, since Past hopping between ground and excited 
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Figure 6. o, as a function 01 tenipemture lor Y ; , ~  = 3.6 x 10” s-’, EK = 46 meV, 
E‘ = 6.5 mev. E‘S 40 mev, 2.0 x 1012 s-1 < 0 
and different ratios v,$,,,/v.&. Exciwion energies are llie Same as in figure 3. Again 
the =me diffusivity results for all ilic C*CUIVCS are obtained as in figure 4. 

< 4.6 x 1012 s-1, v;.’:; 

states leads to an enhancement of the initial mobility of particles starting from a 
ground state. 

For smaller ratios vT,T,/vTT, we have CO distinguish the cases of small and large 
values of Y + ~ , / v ~ ~ , .  

(i) If the intrasite hopping frequency vir, between states T and T’ is much 
smaller than vTT. associated with a transfer to a nearest-neighbour site, a increases 
with increasing fiTT,/vTT and eventually reaches a plateau where a is larger than 
14.8. This plateau corresponds to a diffusion process dominated by successive T-T, 
T-T hops and is described by W O  hopping frequencies vTT, and uT,T. 

(ii) If u&.,/vTT, is large, a attains, for not too small fiTT,/uTT, the numerical 
value 14.8 characteristic for T-T hopping describcd by a single frequency. This means 
that the intrasite hops are fast enough to guarantee that the internal level Structure 
associated with a site may be disregarded. 

(iii) If p$ is smaller, (see figure 3). we get (compared to figure 2) an overall 
reduction of a for large u ~ , ~ , / u ~ ~ .  For small ~ ~ , ~ , / u ~ ~  and large fiTT,/vTT. 
however, the plateau reached by a may be even slightly higher than for larger pT,. 

For a comparison with experiment we necd a as a function of temperature. 
In order to get this dependence we use thc temperature laws (2.7) to (2.10) for 
the hopping 6equencies. ?b calculate pT and pT, (sce (2.3)) we fvc the excitation 
energies at 117 meV for state ly, 165 mcV for l i  and l‘, and 227 meV for state 
2Y. These energies have been chosen to be almost identical to those obtained for 
the local excitation energies of hydrogen in Nb and T& by inelastic neutron scattering 
(see Richter and Shapiro 1980, Hempelmann et a1 1981) or the model calculations 
of Klamt and Xichler (1986). The results for various parameter sets are shown in 
figures 4-7. Besides the excitation encrgies we have fixed v$T and E g  in all the 
figures. Figures 4 and 5 show the temperature variation of a when Ee and Ee& have 
very similiar values. 

In figure 4 all the curves are calculated with v;,?,! = 0. The ratio ~&,., /v+,~ has 
been varied between 20 and 0.5. The absolute value has been chosen such that the 
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Figure 7. 01 as a function of lemperalure for v$T = 3.6 x 10” s-l, U;,,,., = 4.5 x 
10l2 s-’, v ; , ~  = 7.5 x 10” E-’ (v;,T,/v;,T = 6), Ea = 46 meV, E’ = 6.5 meV, 
E‘S = 40 meV, and various values of v$$. The acilation energies and diffusivity are 
the Same as in figure 4. 

diffusivity is the same within the line thickness for all 0-cuwes. The temperature 
dependence of D shown in the lower part of figure 4 exhibits a change of slope 
and has been chosen to be very close to that obtained for H in Nb by Gorski effect 
measurements (see Volkl and Alefeld 1978, Qi cl a/ 1983). 

In figure 5 we set u;,,,/v;,~ = 6 (see also one of the curves in figure 4) and we 
have varied v$$. ?b evaluate ~ 4 , ~  from (2.10) we use 7.40 K as the Debye temper- 
ature and A = 125 meV as an ‘average’ excitation energy of T’. The temperature 
dependence (210) is such that v $ , ~  approaches v$p,! for T = 0 K but increases dras- 
tically with increasing temperature and is a factor of 100 to 400 higher between 400 K 
and 500 K For high values of U$$ the absence of a saturation effect in ~ 4 , ~  leads 
to a maximum of a which would disappear if thc temperature law (2.10) becomes 
invalid at higher temperatures and has to be replaced by a law showing saturation at 
about these temperatures. We want to emphasize that for V;!Z = 10” s-I the intra- 
site transition frequency v + , ~  is, over the whole temperature range of our figure, of 
the same order of magnitude as the hopping frequency v ~ , ~ ,  between excited states. 
Because many phonons are required to take up  the enerby imbalance associated with 
an intrasite transition the ratio V & , . / V ~ , ~ ,  is expected to be smaller than unity but 
even for this or somewhat larger values a measurable temperature dependence of a 
persists. This is because actually U $ ~ , / V . ~ ~  < 1 (where DTT,/4vTT is the relevant 
parameter, see above) is the condition for the observation of deviations from the 
single-frequency hopping model and this latter condition is in some cases less restric- 
tive than the former. The behaviour if Ee6 is considerably larger than Ee (figures 6 
and 7) is quite similiar to that just described. Again a marked temperature depen- 
dence of a is obsewed for parameters which seem to be reasonable for hydrogen in 
metals like Nb or Ta. 

Since the same correlation functions needed to calculate r, are also important 
in quasielastic neutron scattering we expect that the ‘complexity’ of our model also 
shows up in these experiments. This is in agreement with the finding that it is 
impossible to explain the experimental results on NbH and TaH (see Lottner et a1 
1979) within a ‘simple’ diffusion model. A model, however, which can be regarded 
as a special case of ours ( v ~ , ~  = vTT, = vTT = 0) can indeed be fitted to the data. 
However, a temperature-independent value pT, results liom the fit which excludes an 
interpretation in terms of excited states. This led the authors to the interpretation 
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that T must be some unspecified mobile state. The temperature independence of 
pT,, however, is likely to be an artefact due to setting uTT = 0. A detailed discussion 
of neutron scattering in terms of our model should be carried out in the future. 

A further prediction of our model is a marked isotopic effect in a. For deu- 
terium and tritium the level distances are smaller than for hydrogen and therefore 
the excited states becomc important at lower temperatures. A temperature depen- 
dence of a, corresponding to that described previously, should therefore bcgin at 
lower temperatures. However, for smaller level distances the ratio u b , / u T T  should 
be considerably larger. This would lead to a strong reduction of the amplitude of 
the temperature variation of a. On the other hand a very large increase of the ratio 
ur,r#/uTT could enhance this amplitude. If we compare H and D, vT,T,/uTT will 
increase since for H, and probably even for D, tunnelling bctwecn exited states is 
nearly adiabatic and therefore vT,T, will not change very much in going from H to 
D whereas vTT drops enormously due to its quadratic dependence on the tunnel 
integral. For tritium, however, tunnelling between low lying excited states becomes 
non-adiabatic. Therefore vTrT,/uTT should not be much larger for tritium than it 
is for hydrogen. Since the level spacing for tri t ium is much smaller than for hydro- 
gen, and therefore the tunnel integrals cor T-T and T-T‘ transitions in the case of 
tritium are substantially less different, it is even conceivable that this ratio becomes 
smaller for tritium. These considerations show that a dcfinite conclusion concerning 
the amplitude of the variation of a can not be drawn for deutcrium. In the case 
of tritium, however, a reduction of the effect is very likely. Unfortunately deuterium 
cannot be used for these investigations because it has a quadrupole moment and the 
quadrupolar contribution to r l  would obscure the effect. However, one could carry 
out experiments on tritium. 

Quasielastic neutron scattering should show a n  analogous isotopic effect con- 
cerning the onset and ‘strength’ of deviations from a diffusion process describable 
by a single hopping frequency. The onset of the deviation, which shows the most 
transparent isotopic effect, unfortunately is too low in temperature to be detected 
by quasielastic neutron scattering, but a quantitative comparison of experiments per- 
formed on deuterated Nb and Td with the model would givc a dependence of the 
model parameters on the isotopic mass which could, together with corresponding 
measurements of the diffusivity, be used to check the consistency of the model. 

Despite the immense amount of work done to investigate both the macroscopic 
diffusivity D (VOM and Alefeld 1978, Qi PI a1 15153, Mauger el 01 1981 and Hampele 
e! 01 1989) as well as that done to measure I’, (Messer er a! 1986, Majer et al 
1989) in the a-phases of NbH, and TaH, the experimental situation concerning the 
quantity a is still not completely clear. One reason is that both D and rl ,  even for 
low hydrogen content, depend on the hydrogen concentration (Hampele 1989). This 
dependence may be due to some kind of blocking etfect which leads to an influence 
on the motion of one hydrogen atom due to othcr hydrogens located nearby, or, 
in the case of rl ,  by an additional relaxation contribution due to the magnetic 
dipoledipole interaction between the moments of neighbouring hydrogen nuclei. 
This latter effect turns out to be small Cor the concentrations investigated, smaller 
than expected without the blocking of nearesi-neighbour sites (Hampele 1989). These 
concentration dependencies show that many of the measuremcnts are still not fully 
in the low concentration regime treated in this paper. Therefore a strict comparison 
of the experimental results with our calculations is only possible if the concentration 
dependence of the hydrogen mobility can be totally absorbed into concentration- 
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dependent effective hopping frequencies (i.e. if the mean field approximation is 
valid). A further probably more serious problem constitutes the influence of lattice 
defects @recipitates, dislocations, etc) on rl and D. It has been found (Hampele 
1989) that rl in ThH, depends on the strength of the applied magnetic field in a 
temperature range where, according to the observed diffusivity, we should still be on 
the high temperature side (WT= Q 1) of the relaxation maximum. This was attributed 
to the influence of lattice defects on rl. After subtracting the defect contribution 
from r, (no correction of D has been considered) the temperature dependence of Q 

shown in figure 8 was obtained. The two curves correspond to WO extreme frequency 
dependencies and thus two different corrections for defects compatible with the data. 
The full cuwe in figure 8 could be explained within our model if we assume that 
a for the ‘simple’ diffusion model is reduced from 14.8 to about 10 due to lattice 
distortions around H and because of the extension of the hydrogen wavefunction. 
A temperature variation below 1.50 K as indicated by the broken curve, however, 
cannot be explained within our model. For NbH, no dcpendence of rl on the 
strength of the applied field has yet been observed. The resulting a is shown in 
figure 9 (Hampele 1989). D for a hydrogen content of cH =0.05, which is close 
to the concentration cH = 0.04 of the r, measurements, has been used to obtain 
this figure. It differs therefore quantitatively, not qualitatively, from that given in the 
paper of Majer el af (1989) who used D for cH - 0 instead. Again the smooth 
increase above around 170 K could be explained by our model but the very fast 
drop to extremely low 0-values below that temperature must have another origin. 
One should keep in mind, however, that even above 170 K a comparision with our 
calculations still contains some uncertainties due to the dependence of rl and D on 
the hydrogen concentration. 

f f t  

100 200 300 400 
T CKI 

Figure 8, Temperature variation of CI obtained rmm meaSurements an ’BH, after 
correction of 1‘1 for a defect conlribution lor WO exlrenie cases mmpatible with the 
aperimentally observed r t .  The curves are inlrrpolalions calculated from the data (see 
Hampele 1989). 

5. Conclusions 

We investigated the temperature range where hydrogen diffuses both via non-adiabatic 
transitions between the ground states of two nearest-neighbour interstitial wells as 
well as via (possibly adiabatic) transitions between excited levels or between ground 
States and excited levels. This is, e.g., the case for H-diffusion in Nb and ?a at 
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100 200 300 400 
T CKI 

Figure 9. Experimenially delermined lemperaiure variation of OL lor NblG (see Hampele 
1989). 

elevated temperatures. We found that for a range of the model parameters, which are 
quite possibly relevant for hydrogen diffusion, the existence of these various diffusion 
paths has to be taken into account cwplicitly 3 one wants to establish the relation 
between hopping frequencies and quantities reflecting diffusion on a microscale, like 
the hydrogen spin-lattice relaxation rate T i  or quasielastic neutron scattering. It is 
important to realize this as a possibility of interpretation if measurements of r, or 
quasielastic neutron scattering give indications of a non-simple diffusion mechanism. 

The experimentally observed temperature variation of a - r 1 D  (see Messer 
et a1 1986, Hampele et at 1989) indeed indicates the existence of an a temperature 
dependence as predicted by a model which takes excited States into account explicitly. 
Our interpretation of the observed temperature Vdriation of a is completely in term 
of this model which was successfully used to describe the change of slope in D versus 
temperature (see Emin el a1 1979, Klamt and Richler 19%). We neither have to 
introduce an unspecified mobile phase as has becn done by Lottner et a1 (1979) for 
the interpretation of their quasielastic neutron scattering data, nor is it necessary to 
assume occupation of metastable octahedral sites at elevated temperatures as was 
done by Messer el al (1986) to account for thc observed a. 

A quantitative comparison of the model with the data could provide information 
about the temperature variation and the absolute M~UCS of uTT, and U+,.’ which arc 
not accessible by an analysis of D alone and further improves on the precision of the 
determination of the other parameters. This quantitative comparison has not been 
carried out yet, since there arc additional effects and still open questions concerning 
the dependence of r, on the hydrogen concenrration or the inlluence of defects on 
r, and D. These questions have to be settled first by further experimental and 
theoretical investigations before the quantity a may be used to gain a more detailed 
insight into the microscopic diffusion mechanism. 
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Appendix 

If we neglect any hops between ground and excited states we have two entirely 
separated subsystems T and T'. Hopping among the different sites within one of 
these systems is described by just one hopping frcquency and thus in the extreme 
motional narrowing limit the relation between rl and D is given by (3.6) for each 
subsystem, i.e., 

I'r = aTgDF' and rT' - - aT,gDT! 

where DT is given by (3.32) and DT, by an analogous relation. If no energy exchange 
between the two spin systems corresponding to the systems T and T' occurs, the two 
spin systems would relax independently with relaxation rates rT and rT'. In reality, 
however, there is always sufficient energy exchange between the two spin systems on 
the time scales given by (r:)-l and cry')-' to guarantee a common relaxation. 
This energy exchange could be provided, e.g., by some residual hopping between T 
and T states. If this process is very slow compared to vTT and vT,=, so that it may 
be neglected in the calculation of rl  (since it does not inlluence the mean time of 
stay at a lattice site) but is still sufficiently fast to guarantee a common relaxation, 
then the relaxation rate is given by 

rl = PTrT t pT,rT' 

For simplicity we put aT = aT, in the following. This is not very restrictive for the 
case which we are interested in, where vT.T, B vTT and therefore rT' ry, and 
hence assumptions on aT, have very little influence on the resulting rl. We obtain 
then 

If the parameters of figures 4 or 6 are used to evaluate this expression we get a 
sharp increase of a above 250 K but no leveling off (or even a reduction) at higher 
temperatures as in figures 4-6 where hopping between T and T' is included. 
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